# **RESEARCH PAPER**

# Next-Generation Sequencing for Congenital Nephrotic Syndrome: A Multi-Center Cross-Sectional Study from India

Aditi Joshi,<sup>1\*</sup> Aditi Sinha,<sup>2\*</sup> Aakanksha Sharma,<sup>2</sup> Uzma Shamim,<sup>1</sup> Bharathram Uppilli,<sup>1</sup> Pooja Sharma,<sup>1</sup> Sana Zahra,<sup>1</sup> Shaista Parveen,<sup>1</sup> Aradhana Mathur,<sup>1</sup> Monica Chandan,<sup>2</sup> Prachi Tewari,<sup>2</sup> Priyanka Khandelwal,<sup>2</sup> Pankaj Hari,<sup>2</sup> Mitali Mukerji,<sup>1</sup> Mohammed Faruq,<sup>1</sup> Arvind Bagga,<sup>2</sup> for the NephQuest Consortium

From <sup>1</sup>Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi; and <sup>2</sup>Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi; India. \*Joint first authors.

Correspondence to: Professor Arvind Bagga, Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India. arvindbagga@hotmail.com Dr Mohammed Faruq, Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India. faruq.mohd@igib.in

Objective: Information on etiology of congenital nephrotic syndrome in non-Caucasian populations is limited. This study aimed to determine the genetic basis of congenital nephrotic syndrome in Indian patients. Methods: In this observational, cross-sectional study, whole exome sequencing was performed on samples from all children diagnosed with congenital nephrotic syndrome, presenting at centers collaborating in a nationwide registry and biorepository. Analysis was targeted to focus on reported or novel, pathogenic or likely pathogenic variants in 89 genes implicated in etiology of nephrotic syndrome. Sanger sequencing was used to confirm disease-causing variants in patients and allelic segregation of compound heterozygous variants in samples from parents. Inheritance of a shared haplotype was analyzed among ten individuals carrying the most common variant. Results: During 2017-2019, 34 patients with congenital nephrotic syndrome were screened. Consanguinity and similar illness in siblings were reported in eleven patients each. Homozygous or compound heterozygous, pathogenic or likely pathogenic variants were found in NPHS1 in 24 cases, including two novel variants. One patient each had homozygous pathogenic or likely pathogenic known or novel variant in NPHS2, PLCE1, OSGEP and LAMB2 genes. Patients with OSGEP and LAMB2 mutations had phenotype typical of Galloway Mowat and Pierson syndromes, respectively. Three variants in NPHS1 were common to 16 individuals. One reported variant in exon 19 (c.2600G>A; p.Gly867Asp) appears to share a common founder. Conclusion: A genetic cause was determined for 82.4% patients with congenital nephrotic syndrome. Variants in NPHS1 are most common in Indian patients and founder mutations might be present.

Keywords: Nephrin, podocin, Galloway Mowat syndrome, Pierson syndrome, NPHS1

ongenital nephrotic syndrome (NS) is a rare condition, characterized by nephrotic range proteinuria, hypoalbuminemia and edema before 3 months of age. Most patients show morbidities related to edema, infections and/or thrombosis, and progression to end stage renal disease (ESRD) in early childhood [1]. An inherited basis is reported in 60-80% patients; variants in NPHS1, which are most frequent and also cause the Finnish type of congenital NS [2], along with variants in NPHS2, PLCE1, LAMB2 and WT1, result in defects affecting proteins in the podocyte slit diaphragm, actin cytoskeleton or transcription regulation [3-5]. Existing reports on variants in Asian patients are single-center and retrospective, screening for few genes [6-10]. We describe here the results of next-generation sequencing (NGS) in infants with congenital NS, enrolled prospectively from April, 2017 to June, 2019, in a multicenter collaboration on

nephrotic syndrome.

#### METHODS

Following ethics approval and informed parental consent, clinical details and blood samples were collected from patients with congenital NS, diagnosed at seven tertiary care centres in the country. Diagnosis required the confirmation of nephrotic range proteinuria (spot urine protein to creatinine ratio >2.0 mg/mg or dipstick 3+/4+ on three occasions), hypoalbuminemia (serum albumin <3.0 g/dL) and edema beginning below 3-months of age. Intrauterine infections and structural renal anomalies were excluded by appropriate serology and ultrasonography, respectively. In consonance with current practice worldwide, kidney biopsy was not performed and echocardiography was performed if cardiac examination was abnormal. Management involved the use of furosemide (1-2 mg/kg daily, as

INDIAN PEDIATRICS

indicated), enalapril (0.3-0.4 mg/kg/day orally), intravenous infusions of albumin (1-2 g/kg once every 7-14 days), and supplements of thyroxine (5-10  $\mu$ g/kg/day) and vitamins, while ensuring adequate nutrition. Parents were counselled regarding outcomes including risk of progression to end stage kidney disease, and families opted for a palliative care plan due to costs of kidney replacement therapy.

The methodology of NGS, performed at Institute of Genomic and Integrative Biology, Delhi, is detailed in Supp. Methods. Whole exome sequencing (WES) was performed using the Illumina HiSeq2000 or NovaSeq platforms, sequenced reads were mapped and aligned to the reference genome (GRCh37; hg19), and called and annotated variants in 89 genes associated with nephrotic syndrome (Supp. Table SI) [3,11-14] were prioritized based on rarity (minor allele frequency, MAF <0.1%), novelty in population databases [15-17], prediction of deleteriousness by in silico tools, and if previously reported with disease [18]. Only pathogenic and likely pathogenic variants, according to criteria of the American College of Medical Genetics and Genomics (ACMG) 2015 guidelines [18,19] were considered causative, and were validated by Sanger sequencing. Sanger sequencing on parents' samples was used to confirm allele segregation for compound heterozygous variants. Haplotype studies were performed to determine if the NPHS1 variant c.2600G>A (p.Gly867Asp) that segregated in 10 of 34 patients occurred on a common genetic background, suggesting inheritance from a common ancestor (founder mutation) (Supp. Methods) [20].

*Statistical analyses:* Data was summarized as median (interquartile range, IQR) for continuous variables and percentage with 95% confidence interval (CI) for dichotomous variables. Assuming 70% prevalence of pathogenic or likely pathogenic variations in genes encoding key podocyte proteins in patients with congenital nephrotic syndrome [1,3,12,13], 21 patients were required to be enrolled for a precision of 20%, at power of 80% and alpha error of 5%.

#### RESULTS

Samples were collected from 34 unrelated patients (53% boys) with congenital NS diagnosed at 7 centers across India. Onset of edema was at median age of 20 (IQR 15-45) days of life, and was associated with anasarca (91.2%), oliguria (41.2%), poor feeding (35.3%), seizures (32.3%), hypovolemia (23.5%), severe infections (20.6%) and/or lethargy (8.8%). Ten (29.4%) patients were born premature and 13 (38.2%) had low birth weight (**Supp. Table SII**). Consanguinity and similar illness in siblings were reported in 11 (32.4%) cases, each.

Median weight for age standard deviation score (SDS) was -3.1 (IQR -4.1, -1.9), length for age SDS was -3.9 (IQR -4.6, -2.2) and head circumference SDS was -3.2 (IQR -4.5, -2.2). Seven (20.6%) patients had hypertension. Isolated extrarenal features were observed in 9 patients (**Supp. Table SII**), while one patient each had features of Galloway-Mowat and Pierson syndrome. One patient had albinism and microcephaly and history of sibling death with similar symptoms.

The median blood level of albumin was 1.2 (IQR 0.9-1.4) g/dL, cholesterol 274 (234-349) mg/dL, creatinine 0.4 (0.3-0.7) mg/dL, and estimated glomerular filtration rate (eGFR) 60 (28.3-96) mL/minute per 1.73 m<sup>2</sup> [21]. Seven (20.6%) patients had eGFR <30 mL/minute per 1.73 m<sup>2</sup> at evaluation. Three (8.8%) patients had enlarged kidneys without hydronephrosis or venous thrombosis. There was no history of significant teratogenic drug intake during pregnancy or evidence of intrauterine infection.

WES with mean coverage of  $\geq 30x$  (Web Table SIII) returned 16804 variants, of which 1370 variants were present in one or more of the targeted genes (Fig. 1). After filtering, 91 variants were shortlisted (Supp. Table SIV), of which 22 variants were prioritized in 28 patients (Table I; Supp. Fig. S1). Pathogenic and likely pathogenic variants were inherited as homozygous and compound heterozygous variations in 20 and 8 patients, respectively. A monogenic cause was thus established in 82.4% (95% CI 66.9% to 92.5%) of 34 patients with congenital NS. Most variants were conserved across species (Supp. Fig. S2).

Variants in *NPHS1* were most common, including 16 reported [11,12,14,15,22-35] and two novel variants, segregated in 24 patients as homozygous (*n*=16) and compound heterozygous (*n*=8) variants (**Table I**). Reported variations included 7 pathogenic and 9 likely pathogenic variants. One novel homozygous variant in ID#181 was classified as likely pathogenic, while another novel *NPHS1* variant that segregated as compound heterozygous in ID#8, was assigned as pathogenic. **Fig. 2** indicates the distribution of defects in *NPHS1* across the structure of nephrin.

One previously reported [11,14] likely pathogenic *NPHS1* variant in exon 19 (c.G2600A; p.Gly867Asp) was inherited as homozygous in 7 and heterozygous in 3 patients from different ethnic and regional backgrounds, without any specific phenotype (**Tables I** and **SII**). Two other reported variations, p.Arg1160Ter [11,14,27] and p.Arg367Cys [14,25,27], were common to three patients each (**Table I**). In patients with *NPHS1* variants, atrial septal defect was seen in two patients, and developmental delay, facial dysmorphism, clubbing, café

INDIAN PEDIATRICS



MAF-minor allele frequency

Fig. 1 Flowchart for variant filtering after whole exome sequencing.

au lait spots, hirsutism and aqueductal stenosis in one patient each (**Supp. Table SII**).

One patient each had homozygous likely pathogenic variants in *NPHS2* [34] and *OSGEP* [36], associated with an atrial septal defect and Galloway-Mowat syndrome, respectively. One patient each had novel pathogenic homozygous variations in *PLCE1* and *LAMB2* genes; the latter was associated with phenotype consistent with Pierson syndrome.

No variants were prioritized in two patients; four patients had heterozygous variations that were of unknown significance (**Supp. Table SIV**). Patients with causative variations also had additional heterozygous variations (**Supp. Table SIV**).

There were no differences in sex ratio, age at onset of symptoms, levels of serum albumin or estimated GFR between patients with *NPHS1* variations and those with other or no significant variations (*P*>0.05 each).

Forty-four of 900 single nucleotide polymorphisms (SNPs) (**Supp. Table SV**) in the region ( $\pm$ 500 kbp) flanking the c.2600G>A (Gly867Asp) were selected for haplotype analysis in 33 patients. All 17 alleles carrying the

c.2600G>A variant (homozygous in 7 and heterozygous in 3 patients) shared a core haplotype in the 500 kbp region between rs2230181 to rs466452 (**Supp. Table SVI**). Thirteen of 17 alleles also shared a core haplotype extending to 800 kbp length. The 500 kbp core haplotype was observed in only one of 49 non-mutant chromosomes, suggesting a founder effect.

#### DISCUSSION

There is significant heterogeneity in prevalence of inherited defects across studies (**Supp. Table SVII**) [6-10,12,22-26,34]. Variants in *NPHS1* predominate even in non-Finnish cohorts, and contributions by *NPHS2*, *WT1* and *LAMB2* defects differ widely across populations. In the present study, the use of NGS enabled a diagnosis in 82% of 34 patients. These findings are unlike previous studies from non-Caucasian populations that report lower rates of inherited defects, perhaps due to focused testing including a few genes (**Supp. Table SVII**).

Two founder deletion mutations in *NPHS1*, accounting for the majority of cases of Finnish type of congenital nephrotic syndrome, were not observed in our patients, similar to reports from non-Finnish populations [2,3,6-10]. Over 200 *NPHS1* mutations are described worldwide in non-Finnish populations [29,32]. In our report, homozygous and compound heterozygous mutations in *NPHS1* accounted for 70.6% of cases of congenital NS, and 85.7% of cases with an identified genetic etiology. This proportion is higher than previous reports from Asia, in which *NPHS1* mutations accounted for 22-67% of cases, but similar to proportions reported in series including non-Finnish populations (**Supp. Table SVII**).

As shown in Fig. 2, variants in NPHS1 were distributed all over the protein. Three patients shared the variant p.Arg1160Ter, responsible for premature truncation of protein in the intracellular domain that interacts with podocin. This variant, a founder mutation in Maltese patients, is associated with a different allele in Asian patients [25]. While Koziell, et al. reported a mild phenotype in affected girl infants [25], we and other authors [24,35] found a severe phenotype, irrespective of gender, indistinguishable from other NPHS1 mutations. Three patients carried a variant (c.1099C>T; p.Arg367Cys), reported previously as a founder mutation from India [12]. One NPHS1 variant, c.2600G>A (p.Gly867Asp), that translates into a change in the immunoglobulin-like domain 8, found in 10 unrelated patients from five states in north India (Supp. Table SII, Table I and Fig. 1), has been reported from India, Pakistan and Saudi Arabia [8,11,14,37], but not from east Asia [6,7,9] or Europe. Using statistical tools considered more efficient that conventional haplotyping [20], we show

INDIAN PEDIATRICS

| Gene (chromosome);                    | Exon | Variant           | t change                 | $ACMG^{\#}$                     | Patient ID <sup>c</sup>                                              | Reference                              |
|---------------------------------------|------|-------------------|--------------------------|---------------------------------|----------------------------------------------------------------------|----------------------------------------|
| Chromosomal coordinate; change        | в    | cDNA change       | Protein change           | category <sup>b</sup>           |                                                                      |                                        |
| NPHSI (19)                            |      |                   |                          |                                 |                                                                      |                                        |
| 36341349 T>C                          | 5    | c.527-2A>G        |                          | Pathogenic <sup>b5</sup>        | 165                                                                  | 33                                     |
| 36341342 G>A                          | 5    | c.532C>T          | p.Gln178Ter              | Pathogenic                      | 8                                                                    | 26, 29, 34                             |
| 36340176 G>A                          | 7    | c.802C>T          | p.Arg268Ter              | Pathogenic                      | 80                                                                   | 26, 30                                 |
| 36337056 G>T                          | 12   | c.1481C>A         | p.Ser494Ter              | Pathogenic                      | 180                                                                  | 29,31                                  |
| 36335078_36335079delGT                | 16   | c.2138_2139deIAC  | p.Asp713Glyfs*12         | Pathogenic <sup>b6</sup>        | 8                                                                    | Novel                                  |
| 36330221 G>C                          | 22   | c.3027C>G         | p.Tyr1009Ter             | Pathogenic                      | 168                                                                  | 23, 34                                 |
| 36321958 G>A                          | 27   | c.3478C>T         | p.Arg1160Ter             | Pathogenic                      | <b>150, 169,</b> 173 11,                                             | 14, 22, 23, 24, 25, 26, 27, 29, 32, 35 |
| 36317522 TC>T                         | 29   | c.3619delG        | p.Glu1207Lysfs*30        | Pathogenic <sup>b6</sup>        | 4                                                                    | ClinVar                                |
| 36341889 G>A                          | 4    | c.500C>T          | p.Pro167Leu              | Likely pathogenic               | 267                                                                  | 11,22                                  |
| 36340541-36340548<br>delCCGGGGTGinsAA | 9    | c.614_621delinsTT | p.Thr205_Arg207delinsIle | Likely pathogenic <sup>b4</sup> | 180,228                                                              | 22, 26,35                              |
| 36339610 G>A                          | 6    | c.1099C>T         | p.Arg367Cys              | Likely pathogenic               | <b>59</b> , 165, 267                                                 | 14,22,25,26,29,30,33,35                |
| 36339251 G>A                          | 10   | c.1219C>T         | p.Arg407Trp              | Likely pathogenic <sup>b2</sup> | 85                                                                   | 22                                     |
| 36336350 T>C                          | 14   | c.1850A>G         | p.His617Arg              | Likely pathogenic <sup>b1</sup> | 80                                                                   | 26,27,29,30                            |
| 36335272 G>A                          | 15   | c.2020C>T         | p.Pro674Ser              | Likely pathogenic <sup>b1</sup> | 163                                                                  | 24                                     |
| 36333370 G>T                          | 18   | c.2417C>A         | p.Ala806Asp              | Likely pathogenic <sup>b2</sup> | 157                                                                  | 14, 26, 27,29                          |
| 36333089 C>T                          | 19   | c.2600G>A         | p.Gly867Asp              | Likely pathogenic <sup>b1</sup> | 4, <b>40, 47, 146, 162,</b> 173<br><b>196, 201</b> , 228, <b>235</b> | 3, 11,14,34                            |
| 36332715A>G                           | 20   | c.2717T>C         | p.Ile906Thr              | Likely pathogenic <sup>b1</sup> | 181                                                                  | Novel                                  |
| 36322049 C>T                          | 27   | c.3388-1G>A       |                          | Likely pathogenic               | 18                                                                   | 26, 27                                 |
| <i>NPHS2</i> (1)                      |      |                   |                          |                                 |                                                                      |                                        |
| 179530456 C>T                         | б    | c.419G>A          | p.Gly140Glu              | Likely pathogenic <sup>b1</sup> | 28                                                                   | 34                                     |
| PLCE1 (10)                            |      |                   |                          |                                 |                                                                      |                                        |
| 96058156 GC>AT                        | 23   | c.4264C>T         | p.Gln1422Ter             | Pathogenic                      | 46                                                                   | Novel                                  |
| OSGEP(14)                             |      |                   |                          |                                 |                                                                      |                                        |
| 20920566 T>A                          | 6    | c.157A>T          | p.Ile53Phe               | Likely pathogenic <sup>b7</sup> | 154                                                                  | 36                                     |
| LAMB2 (3)                             |      |                   |                          |                                 |                                                                      |                                        |
| 49168499 G>A                          | 8    | c.799C>T          | p.Arg267Ter              | Pathogenic                      | XI                                                                   | Novel                                  |

JOSHI, ET AL.

INDIAN PEDIATRICS

448



**Fig. 2** Localization of novel variations and known mutations in the translated nephrin protein, comprised of eight extracellular immunoglobulin (Ig) -like domains (semi-circles), a fibronectin type III-like module (hexagon), a transmembrane domain (black rectangle) and a C-terminal (C) cytoplasmic domain (curled line). The bottom panel indicates the exons coding for the corresponding protein domains. Note that the 18 variations observed were spread throughout the protein. The variations with dotted lines are known or speculated to be founder mutations.

that c.2600G>A is possibly a founder mutation, as suggested by the lack of genetic variation in the 500-800 kbp length flanking regions [38]. The differences in frequency of the shared haplotype in various ethnicities in the 1000 genome database suggests a European origin for the mutation (**Supp. Table SVIII**) [15]. Our hypothesis requires confirmation by examining for the same shared haplotype in previously reported patients with the p.Gly867Asp mutation.

Mutations in *NPHS2* and *WT1* account for 0-51% and 0-40% cases, respectively, across populations, though *NPHS2* variants are uncommon in Asia (**Supp. Table SVII**). In this cross-sectional study, only one patient had homozygous mutations in *NPHS2*, and none had variants in *WT1*. Given the small study size, these findings have limited generalisability.

Confirming previous findings, we failed to find specific phenotypic associations in patients with *NPHS1*, *NPHS2* and *PLCE1* mutations [4,26,39]. The lone patient with homozygous *LAMB2* variant had findings of Pierson syndrome while another had Galloway-Mowat syndrome secondary to *OSGEP* mutation [36]. The latter patient had the same mutation and phenotype as an infant of Pakistani ethnicity described previously [36].

The present series underscores the utility of providing a genetic etiology in patients with congenital NS, thereby facilitating prenatal counseling and testing in subsequent pregnancies. One *NPHS1* mutation is hypothesized to have a founder effect in Indian population. Information on long term outcomes, including post-transplantation, is lacking since most children were lost to follow up after families chose a palliative care plan. Despite being a multicenter study, the findings of the relatively small sample size might not be generalizable.

**Note:** Supplementary material related to this study is available with the online version at *www.indianpediatrics.net* 

Acknowledgments: We thank the following colleagues participating in the NephQuest network who contributed samples and details of their patients: SP Veeturi, Rainbow Children Hospital, Hyderabad; KL Tiewsoh, Postgraduate Institute of Medical Education and Research, Chandigarh; A Mittal, All India Institute of Medical Sciences, Jodhpur; S Krishnamurthy, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry; M Mantan, Maulana Azad Medical College, New Delhi; M Kumar and K Mishra, Chacha Nehru Bal Chikitsalaya, Delhi.

*Ethics approval*: Ethics committees at CSIR Institute of Genomics and Integrative Biology, Delhi and All India Institute of Medical Sciences, New Delhi; Sanction no. IECPG-616/21.12.2016. RT-33/22.03.2017 and 6/GAP127/CSIR-IGIB/2017 *Contributors*: All authors contributed to the study conception and design. AJ, AS, AS, MF, AB: material preparation, data collection and analysis were performed; AJ, AS: The first draft of the manuscript was written jointly. All authors commented on the manuscript, and approved the final manuscript.

*Funding*: Department of Biotechnology, Government of India (BT/11030/MED/30/1644/2016).

Competing interest: None stated.

#### WHAT IS ALREADY KNOWN?

- · Genetic defects account for 60-80% of cases with congenital nephrotic syndrome
- Mutations in NPHS1 are most common in Caucasians; WT1 and LAMB2 variants are probably more common in Asian patients

#### WHAT THIS STUDY ADDS?

- Genetic defects are present in more than 80% patients with congenital nephrotic syndrome in India
- Mutations in NPHS1 account for more than 80% of patients with an inherited basis
- Common variants in NPHS1 are those that are known (c.1099C>T; p.Arg367Cys) or speculated (c.2600G>A; p.Gly867Asp) to be founder mutations.

#### REFERENCES

- 1. Jalanko H. Congenital nephrotic syndrome. Pediatr Nephrol 2009; 24: 2121-28
- 2. Norio R. Heredity in the congenital nephrotic syndrome. A genetic study of 57 Finnish families with a review of reported cases. Ann Paediatr Fenn 1996;12:S27:1-94
- 3. Ha TS. Genetics of hereditary nephrotic syndrome: a clinical review. Korean J Pediatr 2017;60:55-63
- 4. Hinkes BG, Mucha B, Vlangos CN, et al; Arbeitsgemeinschaftfür Paediatrische Nephrologie Study Group. Nephrotic syndrome in the first year of life: Two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 2007;119: e907-19
- Wang JJ, Mao JH. The etiology of congenital nephrotic syndrome: Current status and challenges. World J Pediatr 2016;12:149-58
- Li GM, Cao Q, Shen Q, et al. Gene mutation analysis in 12 Chinese children with congenital nephrotic syndrome. BMC Nephrol 2018;19:382.
- Sako M, Nakanishi K, Obana M, et al. Analysis of NPHS1, NPHS2, ACTN4, and WT1 in Japanese patients with congenital nephrotic syndrome. Kidney Int 2005;67: 1248-55
- Sharief SN, Hefni NA, Alzahrani WA, et al. Genetics of congenital and infantile nephrotic syndrome. World J Pediatr 2019;15:198-203
- Nishi K, Inoguchi T, Kamei K, et al. Detailed clinical manifestations at onset and prognosis of neonatal-onset Denys-Drash syndrome and congenital nephrotic syndrome of the Finnish type. Clin Exp Nephrol 2019;23:1058-65
- Sinha R, Vasudevan A, Agarwal I, et al. Congenital nephrotic syndrome in India in the current era: A multicenter case series. Nephron 2019;144:1-9
- Bierzynska A, McCarthy HJ, Soderquest K, et al. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int 2017;91:937-47
- Sadowski CE, Lovric S, Ashraf S, et al; SRNS Study Group, Hildebrandt F. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol

2015;26:1279-89

- Trautmann A, Lipska-Ziêtkiewicz BS, Schaefer F. Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: The PodoNet registry. Front Pediatr 2018;6:200
- Lovric S, Fang H, Vega-Warner V, et al; Nephrotic Syndrome Study Group. Rapid detection of monogenic causes of childhood-onset steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2014;9:1109-16
- 1000 Genomes Project Consortium; Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature 2015; 526: 68-74
- 16. Karczewski KJ, Weisburd B, Thomas B, et al; The Exome Aggregation Consortium, Daly MJ, MacArthur DG. The ExAC browser: Displaying reference data information from over 60000 exomes. Nucleic Acids Res 2017;45 (D1): D840-5
- 17. Karczewski KJ, Francioli L, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2022;581:434-43.
- Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005;33:D514-7
- 19. Richards S, Aziz N, Bale S, et al; ACMG Laboratory Quality Assurance Committee. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24
- 20. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001;68:978-89
- 21. Schwartz GJ, Muñoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol 2009;20:629-37
- 22. Schoeb DS, Chernin G, Heeringa SF, et al; Gesselschaftfür Paediatrische Nephrologie Study Group. Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS). Nephrol Dial Transplant 2010;25:2970-6
- 23. Lee JH, Han KH, Lee H, et al. Genetic basis of congenital

and infantile nephrotic syndromes. Am J Kidney Dis 2011;58:1042-3

- 24. Warejko JK, Tan W, Daga A, et al. Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2018;13:53-62
- 25. Koziell A, Grech V, Hussain S, et al. Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum Mol Genet 2002;11:379-88
- 26. Machuca E, Benoit G, Nevo F, et al. Genotype-phenotype correlations in non-Finnish congenital nephrotic syndrome. J Am Soc Nephrol 2010;21:1209-17
- Lenkkeri U, Männikkö M, McCready P, et al. Structure of the gene for congenital nephrotic syndrome of the Finnish type (NPHS1) and characterization of mutations. Am J Hum Genet 1999;64:51–61
- Kestilä M, Lenkkeri U, Männikkö M, et al. Positionally cloned gene for a novel glomerular protein-nephrin-is mutated in congenital nephrotic syndrome. Mol Cell 1998;1:575-82
- 29. Beltcheva O, Martin P, Lenkkeri U, Tryggvason K. Mutation spectrum in the nephrin gene (NPHS1) in congenital nephrotic syndrome. Hum Mutat 2001;17: 368-73
- Ulinski T, Aoun B, Toubiana J, Vitkevic R, Bensman A, Donadieu J. Neutropenia in congenital nephrotic syndrome of the Finnish type: Role of urinary ceruloplasmin loss. Blood 2009;113:4820-1
- Bolk S, Puffenberger EG, Hudson J, Morton DH, Chakravarti A. Elevated frequency and allelic heterogeneity of congenital nephrotic syndrome, Finnish type, in the old order Mennonites. Am J Hum Genet 1999; 65: 1785-90
- 32. Heeringa SF, Vlangos CN, Chernin G, et al; Members of the APN Study Group. Thirteen novel NPHS1 mutations in a

large cohort of children with congenital nephrotic syndrome. Nephrol Dial Transplant 2008;23:3527-33

- 33. Ashton E, Bockenhauer D, Boustred C, Jenkins L, Lench N. ASHG 2013 Poster: Development of a rapid genetic testing service for nephrotic syndrome using next generation sequencing. Conference: American Society of Human Genetics, At Boston, USA 2013; available at https:// www.researchgate.net/publication/258860074\_ASHG\_ 2013\_Poster\_Development\_of\_a\_rapid\_genetic\_testing\_ service\_for\_nephrotic\_syndrom e\_using\_next\_generation\_ sequencing; last accessed 21 February 2020
- 34. Sen ES, Dean P, Yarram-Smith L, et al. Clinical genetic testing using a custom-designed steroid-resistant nephrotic syndrome gene panel: Analysis and recommendations. J Med Genet 2017;54:795-804.
- 35. Ovunc B, Ashraf S, Vega-Warner V, et al; Gesellschaft für Pädiatrische Nephrologie (GPN) Study Group. Mutation analysis of NPHS1 in a worldwide cohort of congenital nephrotic syndrome patients. Nephron Clin Pract 2012;120:c139-46
- 36. Domingo-Gallego A, Furlano M, Pybus M, et al. Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome: Case report and review of the literature. BMC Nephrol 2019;20:126
- 37. Abid A, Khaliq S, Shahid S, et al. A spectrum of novel NPHS1 and NPHS2 gene mutations in pediatric nephrotic syndrome patients from Pakistan. Gene 2012;502:133-7
- Zlotogora J. High frequencies of human genetic diseases: founder effect with genetic drift or selection? Am J Med Genet 1994;49:10-3
- Schultheiss M, Ruf RG, Mucha BE, et al. No evidence for genotype/phenotype correlation in NPHS1 and NPHS2 mutations. Pediatr Nephrol 2004;19:1340-8.

## SUPPLEMENTARY METHODS

*DNA extraction:* DNA was extracted from EDTA blood using QIAamp® DNA Blood Mini Kit (Qiagen, Germantown, MD), as per manufacturer instructions. The quality and the quantity of DNA extracted was assessed using NanoDrop<sup>™</sup> spectrophotometer (Thermo Scientific, Wilmington, DE) and 1% gel electrophoresis before next generation sequencing.

Whole exome sequencing (WES): DNA libraries were prepared using 100 ng of DNA, physically sheared on an ultrasonicator (Covaris), followed by ligation of adapter sequences on to fragmented DNA to generate indexed libraries, and exome enrichment using TruSeq Exome kit (Illumina, San Diego, CA), as per manufacturer protocol. Enriched libraries were quantified by Qubit fluorometer (ThermoFisher) and their size distribution measured using Bioanalyzer (Agilent). Three of 34 samples underwent cluster generation using Illumina Cbot followed by paired end sequencing (2x100 bp) using flowcell v3 on Illumina HiSeq2000 platform. The remainder were sequenced (2x150 bp) on Illumina NovaSeq platform using S2/S4 flowcell.

*Processing of sequenced reads:* Paired-end sequenced reads were processed using the Dynamic Read Analysis for GENomics Bio-IT (DRAGEN, Illumina) platform. The reads were demultiplexed and then mapped and aligned to the reference genome (GRCh37; hg19) using the seed generation algorithm followed by Smith-Waterman algorithm. This was followed by variant calling using Haplotype Caller (Dragen), merging of individual variant call files (VCF) using VCFtools (*vcftools.sourceforge.net*) and annotation of merged VCFs using ANNOVAR (*annovar.openbioinformatics.org*).

*Variant prioritization:* Based on literature search, 89 genes were considered relevant for genetic testing in nephrotic syndrome [i,ii,iii,iv,v]. The list of genes, along with the mean coverage of exonic regions, is provided in **Suppl. Table S1**. Variants in these genes were considered potentially disease causing if they fulfilled one of the following criteria: *(i) rare and deleterious,* with rarity defined as minor allele frequency (MAF) of less than 0.1% in the population databases of 1000 Genomes Project [vi], Exome Aggregator Consortium (Exac) [vii] and Genome Aggregation Database (gnomAD) [viii]; and deleteriousness predicted by assertion of pathogenicity on at least two computational tools, including Polymorphism Phenotyping v2 (PolyPhen2; *http://genetics.bwh.harvard.edu/pph2/*), Sorting Intolerant from Tolerant (SIFT; *https://sift.bii.a-star.edu.sg/*), Mutation taster v2 (*http://www.mutationtaster.org/ChrPos.html*), Combined Annotation Dependent Depletion (CADD; *https://cadd.gs.washington.edu/*) and Genomic Evolutionary Rate Profiling score

JOSHI, ET AL.

(GERP\_RS;http://varianttools.sourceforge.net/Annotation/dbNSFP), Eigen (https://omictools. com/eigen-tool), and where relevant, Human Splicing Finder v3.1 (http://umd.be/HSF3/); (ii) novel and deleterious, with novelty defined by absence in the two population databases as well of Single Database Nucleotide Polymorphism (DbsNP; https://www.ncbi.nlm.nih.gov/snp/) as in the and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/); or (iii) reported, in causative association with disease (congenital or steroid resistant nephrotic syndrome) in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar) or Human Genome Mutation Database (HGMD; http://www.hgmd.cf.ac.uk), particularly if reported as 'pathogenic' or 'likely pathogenic' in ClinVar.

Variants shortlisted based on above criteria were excluded if any of the following conditions were fulfilled: (i) high ( $\geq 0.1\%$ ) MAF in south Asian population of ExAC; (ii) failing to have causative phenotype, such as a variant called in heterozygous state in a gene following autosomal recessive pattern of inheritance [ix]; or (iii) low depth: variant with read depth of <10x. Prioritised variants were classified from benign to pathogenic using the web-based clinical INTERpretation of VARiants (wINTERVAR; http://wintervar.wglab.org/), with or without modifications to follow the criteria outlined by the 2015 guidelines of the American College of Medical Genetics and Genomics (ACMG) [x].

*Variant validation:* Variants considered causative of disease were validated by Sanger sequencing using the ABI3730 genetic analyzer (Applied Biosystems). Sanger sequencing on parents' samples was used to confirm allele segregation for compound heterozygous variations.

**Haplotype analysis of p.Gly867Asp mutant allele**: The NGS data was used to obtain all single nucleotide polymorphisms flanking the mutation ( $\pm$ 500 kbp). Variants with MAF  $\ge$ 0.05% and significant difference in frequency (P<0.05) in patients with and without the mutation (p.Gly867Asp) were selected for haplotype analysis by Phase v2.1 (*http://stephenslab.uchicago.edu/phase/download.html*) to obtain haplotypes segregating with Gly867 and Asp867 associated alleles.

#### JOSHI, ET AL.

| Gene     | Disease                                                                                                           | Inheritance | Transcript     | Mean Coverage |
|----------|-------------------------------------------------------------------------------------------------------------------|-------------|----------------|---------------|
| ACTN4    | Glomerulosclerosis, focal segmental, 1                                                                            | AD          | NM_004924.5    | 109.40        |
| ALG1     | Congenital disorder of glycosylation, type Ik                                                                     | AR          | NM_019109.4    | 126.06        |
| ALMS1    | Alstrom syndrome                                                                                                  | AR          | NM_015120.4    | 104.55        |
| ANKS6    | Nephronophthisis 16                                                                                               | AR          | NM_173551.4    | 46.96         |
| ANLN     | Focal segmental glomerulosclerosis 8                                                                              | AD          | NM_001284301.2 | 61.67         |
| APOL1    | End-stage renal disease, nondiabetic, susceptibility to Glomerulosclerosis, focal segmental, 4, susceptibility to | -           | NM_145343.2    | 51.61         |
| ARHGAP24 | -                                                                                                                 | -           | NM_001025616.2 | 111.73        |
| ARHGDIA  | Nephrotic syndrome, type 8                                                                                        | AR          | NM_001301242.1 | 44.86         |
| AVIL     | -                                                                                                                 | -           | NM_006576.3    | 65.40         |
| CD151    | Nephropathy with pretibial epidermolysis bullosa and deafness                                                     | -           | NM_001039490.1 | 49.87         |
| CD2AP    | Glomerulosclerosis, focal segmental, 3                                                                            | -           | NM_012120.2    | 124.88        |
| CFH      | Complement factor H deficiency (hemolytic uremic syndrome, atypical, susceptibility to, 1)                        | AR AD       | NM_000186.3    | 134.46        |
| CLCN5    | Nephrolithiasis, type I: Proteinuria, low molecular weight, with hypercalciuric nephrocalcinosis                  | XLR XLR     | NM_001127898.3 | 77.52         |
| COL4A1   | Angiopathy, hereditary, with nephropathy, aneurysms, and muscle cramps                                            | AD          | NM_001845.5    | 126.02        |
| COL4A3   | Alport syndrome 2, autosomal recessive; Alport syndrome 3, autosomal dominant; hematuria, benign familial         | AR AD AD    | NM_000091.4    | 131.02        |
| COL4A4   | Alport syndrome 2, autosomal recessive hematuria, familial benign                                                 | AR AD       | NM_000092.4    | 118.25        |
| COL4A5   | Alport syndrome 1, X-linked                                                                                       | XLD         | NM_000495.4    | 90.51         |
| COQ2     | Coenzyme Q10 deficiency, primary, 1                                                                               | AR          | NM_015697.7    | 81.81         |
| COQ6     | Coenzyme Q10 deficiency, primary, 6                                                                               | AR          | NM_182476.2    | 149.02        |
| COQ7     | Coenzyme Q10 deficiency, primary, 8                                                                               | AR          | NM_016138.4    | 53.76         |
| COQ8B    | Nephrotic syndrome, type 9                                                                                        | AR          | NM_001142555.2 | 52.54         |
| COQ9     | Coenzyme Q10 deficiency, primary, 5                                                                               | AR          | NM_020312.3    | 130.77        |
| CRB2     | Focal segmental glomerulosclerosis 9; ventriculomegaly with cystic kidney disease                                 | AR AR       | NM_173689.6    | 41.61         |
| CUBN     | Finnish type                                                                                                      | AR          | NM_001081.3    | 136.24        |
| CYP11B2  | Hypoaldosteronism, congenital, due to CMO I deficiency; hypoaldosteronism, congenital, due to CMO II deficiency   | AR AR       | NM_000498.3    | 121.62        |
| DGKE     | {Hemolytic uremic syndrome, atypical, susceptibility to, 7}  Nephrotic syndrome, type 7                           | AR AR       | NM_003647.2    | 58.76         |

# Supplementary Table SI Panel of 89 genes examined for association with congenital nephrotic syndrome along with coverage

INDIAN PEDIATRICS

| E2F3   | -                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                   | NM_001949.4    | 61.62  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------|--------|
| EMP2   | Nephrotic syndrome, type 10                                                                                                                                                                                                                                                                                                                                                                                             | AR                                                  | NM_001424.5    | 45.32  |
| EXT1   | Chondrosarcoma  Exostoses, multiple, type 1                                                                                                                                                                                                                                                                                                                                                                             | AR AD                                               | NM_000127.2    | 114.96 |
| FAT1   | -                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                   | NM_005245.3    | 75.17  |
| FN1    | Glomerulopathy with fibronectin deposits 2                                                                                                                                                                                                                                                                                                                                                                              | AD                                                  | NM_001306129.1 | 127.17 |
| G6PC   | Glycogen storage disease                                                                                                                                                                                                                                                                                                                                                                                                | AR                                                  | NM_000151.3    | 126.16 |
| GATA3  | Hypoparathyroidism, sensorineural deafness, and renal dysplasia                                                                                                                                                                                                                                                                                                                                                         | AD                                                  | NM_001002295.1 | 94.05  |
| GFND1  | Glomerulopathy with fibronectin deposits 1                                                                                                                                                                                                                                                                                                                                                                              | AD                                                  | MIM:137950     | -      |
| GLA    | Fabry disease  Fabry disease, cardiac variant                                                                                                                                                                                                                                                                                                                                                                           | X-linked                                            | NM_000169.2    | 92.44  |
| IGAN1  | {IgA nephropathy, susceptibility to, 1}                                                                                                                                                                                                                                                                                                                                                                                 | ?AD                                                 | MIM:161950     | -      |
| IGAN2  | {IgA nephropathy, susceptibility to, 2}                                                                                                                                                                                                                                                                                                                                                                                 | ?AD                                                 | MIM:613944     | -      |
| INF2   | Glomerulosclerosis, focal segmental, 5                                                                                                                                                                                                                                                                                                                                                                                  | AD                                                  | NM_001031714.3 | 63.42  |
| ITGA3  | Interstitial lung disease, nephrotic syndrome, and epidermolysis bullosa, congenital                                                                                                                                                                                                                                                                                                                                    | AR                                                  | NM_002204.3    | 52.16  |
| ITGB4  | Epidermolysis bullosa of hands and feet  Epidermolysis bullosa, junctional, non-Herlitz type  Epidermolysis bullosa, junctional, with pyloric atresia                                                                                                                                                                                                                                                                   | AD AR AR                                            | NM_001256876.1 | 101.91 |
| KANK1  | Cerebral palsy, spastic quadriplegic, 2                                                                                                                                                                                                                                                                                                                                                                                 | -                                                   | NM_001136191.2 | 70.34  |
| KANK2  | Nephrotic syndrome, type 16                                                                                                                                                                                                                                                                                                                                                                                             | AR                                                  | NM_001320269.1 | 45.10  |
| KANK4  | -                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                   | NM_006014.4    | 72.41  |
| LAGE3  | Galloway-Mowat syndrome 2, X-linked                                                                                                                                                                                                                                                                                                                                                                                     | XLR                                                 | NM_002292.3    | 24.05  |
| LAMB2  | -                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                   | NM_170708.3    | 126.50 |
| LMNA   | Cardiomyopathy, dilated, 1A  Charcot-Marie-Tooth disease, type 2B1  Emery-Dreifuss<br>muscular dystrophy 2, autosomal dominant  Emery-Dreifuss muscular dystrophy 3, autosomal<br>recessive  Heart-hand syndrome, Slovenian type  Hutchinson-Gilford progeria  Lipodystrophy,<br>familial partial, type 2  Malouf syndrome  Mandibuloacral dysplasia  Muscular dystrophy,<br>congenital  Restrictive dermopathy, lethal | AD AR AD A<br>R AD <br>AR,AD AD <br>AD AR AD A<br>R | NM_001282626.1 | 108.23 |
| LMX1B  | Nail-patella syndrome                                                                                                                                                                                                                                                                                                                                                                                                   | AD                                                  | NM_001174146.1 | 56.96  |
| LRP2   | Donnai-Barrow syndrome                                                                                                                                                                                                                                                                                                                                                                                                  | AR                                                  | NM_004525.2    | 130.34 |
| MAFB   | Multicentric carpotarsal osteolysis syndrome                                                                                                                                                                                                                                                                                                                                                                            | AD                                                  | NM_005461.4    | 49.48  |
| MAGI2  | Nephrotic syndrome, type 15                                                                                                                                                                                                                                                                                                                                                                                             | AR                                                  | NM_001301128.1 | 66.23  |
| MED28  | -                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                   | NM_025205.4    | 79.14  |
| MEFV   | Familial Mediterranean fever   Familial Mediterranean fever                                                                                                                                                                                                                                                                                                                                                             | AD AR                                               | NM_000243.2    | 93.60  |
| MT-TL1 | -                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                   |                | -      |
| MUC1   | Medullary cystic kidney disease 1                                                                                                                                                                                                                                                                                                                                                                                       | AD                                                  | NM_002456.5    | 62.84  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                |        |

INDIAN PEDIATRICS

| МҮН9     | Deafness, autosomal dominant 17 Macrothrombocytopenia and granulocyte inclusions with<br>or without nephritis or sensorineural hearing loss | AD AD     | NM_002473.5    | 112.51 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|--------|
| MYO1E    | Glomerulosclerosis, focal segmental, 6                                                                                                      | AR        | NM_004998.3    | 125.65 |
| NEIL1    | -                                                                                                                                           | -         | NM_001256552.1 | 62.27  |
| NEU1     | Sialidosis, type I  Sialidosis, type II                                                                                                     | AR AR     | NM_000434.3    | 119.58 |
| NPHP4    | Nephronophthisis 4   Senior-Loken syndrome 4                                                                                                | AR AR     | NM_015102.4    | 52.17  |
| NPHS1    | Nephrotic syndrome, type 1                                                                                                                  | AR        | NM_004646.3    | 112.08 |
| NPHS2    | Nephrotic syndrome, type 2                                                                                                                  | AR        | NM_001297575.1 | 86.29  |
| NUP107   | Galloway-Mowat syndrome 7; nephrotic syndrome, type 11; ?ovarian dysgenesis 6                                                               | AR        | NM_020401.3    | 60.98  |
| NUP205   | ?Nephrotic syndrome, type 13                                                                                                                | -         | NM_015135.2    | 71.10  |
| NUP93    | Nephrotic syndrome, type 12                                                                                                                 | AR        | NM_014669.4    | 56.54  |
| NXF5     | -                                                                                                                                           | -         | NM_032946.2    | 83.26  |
| OCRL     | Dent disease 2  Lowe syndrome                                                                                                               | XLR;  XLR | NM_001587.3    | 94.16  |
| OSGEP    | Galloway-Mowat syndrome 3                                                                                                                   | AR        | NM_017807.3    | 62.15  |
| PAX2     | Glomerulosclerosis, focal segmental, 7; papillorenal syndrome                                                                               | AD; AD    | NM_001304569.1 | 106.34 |
| PDSS2    | Coenzyme Q10 deficiency, primary, 3                                                                                                         | AR        | NM_020381.3    | 119.97 |
| PLCE1    | Nephrotic syndrome, type 3                                                                                                                  | AR        | NM_016341.3    | 124.63 |
| PMM2     | Congenital disorder of glycosylation, type la                                                                                               | AR        | NM_000303.2    | 133.97 |
| PODXL    | -                                                                                                                                           | -         | NM_001018111.2 | 61.63  |
| PTPRO    | Nephrotic syndrome, type 6                                                                                                                  | AR        | NM_030668.2    | 137.09 |
| SCARB2   | Epilepsy, progressive myoclonic 4, with or without renal failure                                                                            | AR        | NM_001204255.1 | 123.97 |
| SGPL1    | Nephrotic syndrome, type 14                                                                                                                 | AR        | NM_003901.3    | 66.27  |
| SMARCAL1 | Schimkeimmunoosseous dysplasia                                                                                                              | AR        | NM_001127207.1 | 122.11 |
| SPRY2    | IgA nephropathy, susceptibility to, 3                                                                                                       | AD        | NM_001318536.1 | 99.38  |
| SYNPO    | -                                                                                                                                           | -         | NM_001166208.1 | 87.84  |
| TP53RK   | Galloway-Mowat syndrome 4                                                                                                                   | AR        | NM_033550.3    | 62.52  |
| TPRKB    | Galloway-Mowat syndrome 5                                                                                                                   | AR        | NM_001330386.1 | 64.71  |
| TRPC6    | Glomerulosclerosis, focal segmental, 2                                                                                                      | AD        | NM_004621.5    | 96.58  |
| TTC21B   | Nephronophthisis 12                                                                                                                         | AR,AD     | NM_024753.4    | 142.42 |
| TUBAL3   | -                                                                                                                                           | -         | NM_001171864.1 | 61.15  |
| VIPAS39  | Arthrogryposis, renal dysfunction, and cholestasis 2                                                                                        | AR        | NM_001193314.1 | 125.19 |

| VPS33B   | Arthrogryposis, renal dysfunction, and cholestasis 1                               | AR                     | NM_001289148.1 | 137.52 |
|----------|------------------------------------------------------------------------------------|------------------------|----------------|--------|
| WDR73    | Galloway-Mowat syndrome 1                                                          | AR                     | NM_032856.3    | 73.33  |
| WT1      | Denys-Drash syndrome, Frasier syndrome, nephrotic syndrome, type 4                 | AD,somaticm<br>utation | NM_000378.4    | 103.30 |
| XPO5     | -                                                                                  | -                      | NM_020750.2    | 57.90  |
| ZMPSTE24 | Mandibuloacral dysplasia with type B lipodystrophy; restrictive dermopathy; lethal | AR                     | NM_005857.4    | 118.18 |

## Supplementary Table SII Clinical and demographic characteristics of included patients

| ID               | Sex  | Religion | State of<br>origin | Age at<br>onset,<br>days | Consang<br>uinity | Family<br>history | Extra-renal<br>features                                                                 | Low<br>birth<br>weight | Prem<br>aturity | Seizu<br>res | Weight<br>SDS | Length<br>SDS | eGFR, ml/min<br>per 1.73 m <sup>2</sup> | Serum<br>albumin,<br>g/dl | Total<br>cholesterol,<br>mg/dl |
|------------------|------|----------|--------------------|--------------------------|-------------------|-------------------|-----------------------------------------------------------------------------------------|------------------------|-----------------|--------------|---------------|---------------|-----------------------------------------|---------------------------|--------------------------------|
| 4 <sup>^1</sup>  | Boy  | Hindu    | Haryana            | 5                        | 0                 | 0                 | Developmental<br>delay                                                                  | 0                      | 1               | 0            | -1.05         | -3.68         | 86.67                                   | 2.2                       | 492                            |
| 8                | Воу  | Hindu    | Uttar<br>Pradesh   | 30                       | 0                 | 0                 | 0                                                                                       | 1                      | 1               | 1            | -1.56         | -4.46         | 60.00                                   | 1.5                       | 171                            |
| 18               | Воу  | Muslim   | Uttar<br>Pradesh   | 15                       | 1                 | 0                 | Clubbing                                                                                | 1                      | 1               | 1            | 0.2           | NA            | 60.00                                   | 0.6                       | 201                            |
| 28               | Воу  | Hindu    | Punjab             | 20                       | 0                 | 0                 | Atrial septal<br>defect                                                                 | 0                      | 0               | 0            | NA            | NA            | 65.00                                   | 3.1                       | NA                             |
| 30               | Girl | Hindu    | Delhi              | NA                       | 0                 | 0                 | 0                                                                                       | 0                      | 0               | 0            | NA            | NA            | NA                                      | NA                        | NA                             |
| 40 <sup>^1</sup> | Boy  | Hindu    | Delhi              | 5                        | 0                 | 1                 | 0                                                                                       | 1                      | 0               | 1            | NA            | NA            | 22.60                                   | 1                         | NA                             |
| 46               | Boy  | Hindu    | NK                 |                          | 0                 | 0                 | 0                                                                                       | 0                      | 0               | 0            | NA            | NA            | NA                                      | NA                        | NA                             |
| 47 <sup>^1</sup> | Воу  | Hindu    | Rajasth<br>an      | 30                       | 0                 | 0                 | 0                                                                                       | 0                      | 0               | 0            | -2.48         | -4.63         | 24.00                                   | 2.3                       | 283                            |
| 51               | Boy  | Hindu    | Delhi              | 90                       | 0                 | 1                 | Oculocutaneous<br>albinism,<br>developmental<br>delay,<br>microcephaly,<br>hepatomegaly | 0                      | 0               | 1            | NA            | NA            | 4.24                                    | 2.1                       | NA                             |
| 52               | Girl | Hindu    | Delhi              | NA                       | 0                 | 0                 | 0                                                                                       | 0                      | 0               | 0            | NA            | NA            | NA                                      | NA                        | NA                             |
| 59 <sup>^3</sup> | Girl | Hindu    | Nepal              | 45                       | 0                 | 1                 | Atrial septal<br>defect                                                                 | 1                      | 1               | 0            | -1.88         | -4.06         | 21.85                                   | 1.1                       | 391                            |
| 80               | Воу  | Hindu    | Telanga<br>na      | 30                       | 0                 | 0                 | 0                                                                                       | 1                      | 1               | 0            | -3.94         | NA            | NA                                      | 1.2                       | 188                            |
| 85               | Girl | Hindu    | Madhya<br>Pradesh  | 15                       | 0                 | 1                 | 0                                                                                       | 0                      | 0               | 0            | -3.29         | -11.73        | 49.00                                   | 1.3                       | 349                            |
| 146 <sup>^</sup> | Girl | Hindu    | Delhi              | 4                        | 0                 | 0                 | 0                                                                                       | 1                      | 1               | 1            | -4.02         | -3.54         | 46.40                                   | 1.2                       | 233                            |
| 150 <sup>^</sup> | Boy  | Hindu    | Punjab             | 60                       | 0                 | 0                 | 0                                                                                       | 1                      | 1               | 1            | -3.14         | -2.16         | 36.00                                   | 1.1                       | 247                            |
| 154              | Girl | Muslim   | Uttar<br>Pradesh   | 4                        | 1                 | 1                 | Hiatus hernia,<br>microcephaly,<br>developmental<br>delay, hypotonia                    | 1                      | 0               | 0            | -2.2          | -1.3          | 64.00                                   | 0.9                       | 406                            |
| 157              | Boy  | Hindu    | Uttar<br>Pradesh   | 15                       | 0                 | 1                 | Aqueductal stenosis,                                                                    | 0                      | 0               | 1            | -4.61         | -5.12         | 58.00                                   | 1.3                       | 295                            |

INDIAN PEDIATRICS

| Joshi, et al. |
|---------------|
|---------------|

|                             |      |        |                  |    |   |   | obstructive<br>hydrocephalus    |    |    |    |       |       |        |      |     |
|-----------------------------|------|--------|------------------|----|---|---|---------------------------------|----|----|----|-------|-------|--------|------|-----|
| 162 <sup>^</sup>            | Воу  | Muslim | Delhi            | 30 | 1 | 0 | 0                               | 1  | 1  | 0  | 0.6   | NA    | 96.00  | 1.3  | 428 |
| 163                         | Girl | 3      | Punjab           | 30 | 0 | 0 | 0                               | 0  | 0  | 0  | -4.55 | -3.92 | 77.33  | 1.4  | 234 |
| 165 <sup>^</sup><br>3       | Girl | Hindu  | Bihar            | 45 | 0 | 0 | 0                               | 0  | 0  | 0  | -4.22 | -2.85 | 32.00  | 0.9  | 276 |
| 168                         | Girl | Muslim | Uttar<br>Pradesh | 20 | 1 | 1 | Café au lait<br>spot; hirsutism | 1  | 0  | 0  | -2.73 | -1.71 | 104.00 | 1.7  | 243 |
| 169 <sup>^</sup>            | Girl | Muslim | Uttar<br>Pradesh | 26 | 1 | 0 | 0                               | 1  | 0  | 0  | -3.61 | -4.07 | 94.00  | 0.6  | 402 |
| <b>173</b> <sup>^</sup> 1,2 | Girl | Hindu  | Uttar<br>Pradesh | 60 | 0 | 0 | 0                               | 1  | 1  | 1  | -4.14 | -5.17 | 17.00  | 0.7  | 172 |
| 180                         | Girl | Hindu  | Uttar<br>Pradesh | 85 | 0 | 0 | 0                               | 0  | 1  | 0  | -4.32 | -6.39 | 200.00 | 0.8  | 250 |
| 181                         | Воу  | Muslim | Uttar<br>Pradesh | 12 | 0 | 0 | Dysmorphic<br>facies            | 0  | 1  | 0  | 0.8   | NA    | 36.00  | 1.2  | 342 |
| 196 <sup>^</sup>            | Воу  | Muslim | Uttar<br>Pradesh | 15 | 1 | 0 | 0                               | 1  | 0  | 1  | -4.14 | -4.52 | 28.29  | 0.9  | 474 |
| 201 <sup>^</sup>            | Girl | Muslim | Delhi            | 20 | 1 | 1 | 0                               | 0  | 0  | 0  | -2.23 | -3.37 | 196.00 | 0.56 | 237 |
| 217                         | Воу  | Muslim | Rajasth<br>an    | 2  | 1 | 1 | 0                               | NA | NA |    | -2.69 | -0.23 | 23.66  | 1.44 | 309 |
| 228 <sup>^</sup>            | Boy  | Hindu  | Uttar<br>Pradesh | 15 | 0 | 0 | 0                               | NA | NA | 1  | -4.91 | -0.5  | 201.00 | 1.1  | 239 |
| 235 <sup>^</sup>            | Girl | Muslim | Uttar<br>Pradesh | 45 | 0 | 0 | 0                               | 1  | 0  | 0  | -5.83 | -5.17 | 123.90 | 1.4  | 200 |
| 240                         | Boy  | Hindu  | Puduch<br>erry   | 70 | 1 | 1 | Dysplastic ears                 | NA | NA | 0  | -0.12 | -0.59 | 134.23 | 0.9  | 271 |
| 266                         | Boy  | Muslim | Delhi            | 15 | 1 | 0 | 0                               | NA | NA | NA | NA    | NA    | NA     | 1.23 | 296 |
| 267 <sup>^</sup>            | Girl | Hindu  | Bihar            | 15 | 0 | 1 | Atrial septal<br>defect         | 0  | 0  | 0  | NA    | NA    | NA     | 1.2  | NA  |
| X1                          | Girl | Muslim | Punjab           | 15 | 1 | 0 | Microcoria,micro<br>cornea      | NA | NA | NA | NA    | NA    | NA     | NA   | NA  |

eGFR estimated glomerular filtration rate; NA not available ^Indicates patients that shared the following variations: <sup>1</sup>c.2600G>A; <sup>2</sup>c.3478C>T and <sup>3</sup>c.C1099C>T

# Supplementary Table SIII Quality metrics based on raw (FASTQ) and mapped (BAM) reads

| -   |          |                     |          |
|-----|----------|---------------------|----------|
| Sam | Total    | Percentage of total | Mean     |
| ple | mapped   | mapped reads over   | region   |
| ID  | reads    | reference genome    | coverage |
|     |          |                     | depth    |
| 4   | 36903956 | 73.80%              | 48.2     |
| 8   | 36883757 | 74.50%              | 48.9     |
| 18  | 39101579 | 76.00%              | 52.8     |
| 28  | 39925438 | 97.86%              | 57.45    |
| 30  | 33396553 | 97.6%               | 43.96    |
| 40  | 36402136 | 97.77%              | 49.82    |
| 46  | 46559034 | 97.63%              | 57.5     |
| 47  | 48347870 | 97.67%              | 51.46    |
| 51  | 41882937 | 98.14%              | 58.09    |
| 52  | 54820473 | 97.81%              | 59.33    |
| 59  | 43196032 | 97.71%              | 58.23    |
| 80  | 46494263 | 97.72%              | 57       |
| 85  | 41809738 | 97.7%               | 42.99    |
| 146 | 35916462 | 97.55%              | 42.14    |
| 150 | 48251461 | 97.55%              | 49.67    |
| 154 | 37484353 | 98.19%              | 50.85    |
| 157 | 47974741 | 97.63%              | 51.34    |
| 162 | 50014242 | 97.72%              | 54.71    |
| 163 | 33651571 | 97.79%              | 44.01    |
| 165 | 48225036 | 97.75%              | 61.04    |
| 168 | 47661449 | 98.01%              | 51.14    |
| 169 | 35009940 | 97.71%              | 41.01    |
| 173 | 33637511 | 97.71%              | 34.08    |
| 180 | 28249162 | 97.89%              | 37.79    |
| 181 | 32296239 | 97.56%              | 34.09    |
| 196 | 30935558 | 97.36%              | 35.64    |
| 201 | 33626554 | 98.26%              | 59.42    |
| 217 | 74654485 | 98.17%              | 115.89   |
| 228 | 55633896 | 98.08%              | 90.73    |
| 235 | 66570469 | 98.09%              | 97.98    |
| 240 | 35311365 | 97.81%              | 53.55    |
| 266 | 40554026 | 97.94%              | 66.39    |
| 267 | 48404929 | 98.04%              | 82.57    |
| X1  | 53300045 | 99.17%              | 90.9     |

INDIAN PEDIATRICS

## Supplementary Table SIV Lists of prioritized variants for individual patients. Variants in bold were considered relevant

| Pati | Gene      | Chromosome:                       | Exon | Consequence                       | Zygosity                                | Change | Frequency in 1KG; Exac;                          | Polyph | CADD- | Eigen  | GERP++ |
|------|-----------|-----------------------------------|------|-----------------------------------|-----------------------------------------|--------|--------------------------------------------------|--------|-------|--------|--------|
| ent  |           | Position                          |      | (Base-pair and                    |                                         | -      | Exac SAS; gnomAD                                 | en     | Phred | raw    | RS     |
| ID   |           |                                   |      | amino acid)                       |                                         |        | <u> </u>                                         |        |       |        | -      |
| 4    | NPHS1     | 19:36317523                       | 29   | c.3619delG:p.E120                 | Heterozygous                            | fs*del | .; .; .; 4.0x10 <sup>-6</sup>                    | •      | •     |        | •      |
|      |           |                                   |      | 7Kfs*29                           |                                         |        |                                                  |        |       |        |        |
|      | NPHS1     | 19:36333089                       | 19   | c.G2600A:p.G867D                  | Heterozygous                            | NS     | .; 0.00002173; 0.0001;<br>0.00001634             | D      | 28.7  | 0.74   | 3.88   |
|      | ITGB4     | 17:73753376                       | 39   | c.G5314A:p.E1772K                 | Heterozygous                            | NS     | 0.0002; 0.000059; 0;<br>0.000072                 | В      | 23    | -0.305 | 3.03   |
| 8    | NPHS1     | 19:<br>36335078_3633<br>5079delGT | 16   | c.2138_2139deIAC:<br>p.D713Gfs*12 | Heterozygous                            | fs*del | .; .; .; .                                       | •      |       |        | •      |
|      | NPHS1     | 19:36341342                       | 5    | c.C532T:<br>p.Q178X               | Heterozygous                            | Tr*    | .; .; .; 0.00001193                              | •      | 35    | 0.545  | 3.26   |
|      | COQ8B     | 19:41198902                       | 14   | c.T1250C:<br>p.L417P              | Heterozygous                            | NS     | · · · ·<br>·, ·, ·, ·, ·                         | D      | 25.6  | 0.831  | 5.37   |
| 18   | NPHS1     | 19:36322049                       | 27   | c.3388-1G>A                       | Homozygous                              | Sp     | .; 0.000083; 0; 3.98x10 <sup>-6</sup>            |        | 22.2  | 0.771  | 4.1    |
|      | NPHS1     | 19:36333098                       | 19   | c.G2591A:<br>p R864H              | Homozygous                              | NS     | 0.0002; 0.0001; 7.2x10 <sup>-5</sup> ;<br>0.0001 | D      | 34    | 0.501  | 4.93   |
|      | FN1       | 2:216242961                       | 35   | c.G5647C:                         | Heterozygous                            | NS     | · · · · · · · · · · · · · · · · · · ·            | В      | 22.9  | -0.123 | 4.6    |
| 28   | NPHS2     | 1:179530456                       | 3    | c.G419A:                          | Homozygous                              | NS     | .; 8.24 x10⁻⁶; 6.1 x10⁻⁵; .                      | D      | 32    | 0.983  | 5.82   |
|      |           |                                   |      | p.G140E                           |                                         |        |                                                  |        |       |        |        |
|      | MUC1      | 1:155162020                       | 2    | c.C113G:<br>n S38W                | Heterozygous                            | NS     | 0.0004; 0.0002; 0.0013;                          | D      | 22    | -0.814 | -3.48  |
| 30   | No variar | nts prioritized                   |      | p.00011                           |                                         |        | 0.0002                                           |        |       |        |        |
| 40   | NPHS1     | 19:36333089                       | 19   | c.G2600A:                         | Homozvaous                              | NS     | .: 0.000022: 0.0001:                             | D      | 28.7  | 0.74   | 3.88   |
| -    |           |                                   |      | p.G867D                           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        | 0.000016                                         |        |       |        |        |
|      | ALMS1     | 2:73799812                        | 16   | c.A10805G:                        | Heterozygous                            | NS     | .; 0.0001; 0.001; 0.0001                         | D      | 24.5  | 0.46   | 4.44   |
|      |           |                                   |      | p.N3602S                          |                                         |        |                                                  |        |       |        |        |
|      | ARHGD     | 17:79826497                       | 7    | c.G758A:                          | Heterozygous                            | NS     | .; .; .; 7.50 x10 <sup>-6</sup>                  |        |       |        |        |
|      | IA        |                                   |      | p.R253H                           |                                         |        |                                                  |        |       |        |        |
| 46   | PLCE1     | 10:96058156                       | 24   | c.C5188T:                         | Homozygous                              | Tr*    | .; .; .; .                                       | •      | 41    | 0.964  | 5.6    |
|      |           |                                   |      | p.Q1730X                          |                                         |        |                                                  |        |       |        |        |
|      | ALMS1     | 2:73653592                        | 6    | c.G1249T:<br>p.G417W              | Heterozygous                            | NS     | ., ., ., .                                       | D      | 26    | 0.325  | 3.8    |
| 1    |           |                                   |      | p.0+1/W                           |                                         |        |                                                  |        |       |        |        |

INDIAN PEDIATRICS

NGS FOR CONGENITAL NEPHROTIC SYNDROME

|     | INF2         | 14:105181131 | 21 | c.G3632T:<br>p.R1211L     | Heterozygous | NS     | .; 0.0002; 0.0011; 0.000098           | Р | 22.8  | -0.822 | -2.53 |
|-----|--------------|--------------|----|---------------------------|--------------|--------|---------------------------------------|---|-------|--------|-------|
| 47  | NPHS1        | 19:36333089  | 19 | c.G2600A:<br>p.G867D      | Homozygous   | NS     | .; 0.000022; 0.0001;<br>0.00001634    | D | 28.7  | 0.74   | 3.88  |
|     | COL4A<br>3   | 2:228173699  | 49 | c.G4547A:<br>p.R1516Q     | Heterozygous | NS     | .; 0.000075; 0.0003; 0.000072         | D | 28.4  | 1.083  | 5.97  |
|     | CRB2         | 9:126128285  | 3  | c.508_509del:<br>p.C170fs | Heterozygous | fs*del | • • • • •<br>• • • • • • •            |   | •     |        | •     |
| 51  | COL4A<br>4   | 2:227924195  | 28 | c.C2309T:<br>p.P770L      | Heterozygous | NS     | .; 0.0000663; 0; 0.00003606           | D | 25.1  | 0.717  | 5.99  |
|     | NUP93        | 16:56864492  | 10 | c.G980A:<br>p.R327H       | Heterozygous | NS     | .; 0.0000165; 0.0001;<br>0.00002388   | D | 34    | 0.949  | 5.11  |
| 52  | ARHGA<br>P24 | 4:86921681   | 10 | c.G2053A:<br>p.D685N      | Heterozygous | NS     | 0.0008; 0.0009; 0.0064;<br>0.0009     | Ρ | 29.3  | 0.295  | 5.56  |
|     | SCARB<br>2   | 4:77116941   | 2  | c.A194G:<br>p.Y65C        | Heterozygous | NS     | 0.0006; 0.0003; 0.0021;<br>0.0003     | D | 25.3  | 0.53   | 4.35  |
| 59  | NPHS1        | 19:36339610  | 9  | c.C1099T:<br>p.R367C      | Homozygous   | NS     | .; 0.00003308; 0.0001;<br>0.00003978  | D | 28.7  | 0.528  | 4.37  |
|     | ARHGA<br>P24 | 4:86921681   | 10 | c.G2053A:<br>p.D685N      | Heterozygous | NS     | 0.0008; 0.0009; 0.0064;<br>0.0009     | Ρ | 29.3  | 0.295  | 5.56  |
| 80  | NPHS1        | 19:36336350  | 14 | c.A1850G:<br>p.H617R      | Heterozygous | NS     | .; 0.0000084; 0; 7.98x10⁵             | D | 22.8  | 0.43   | 4.56  |
|     | NPHS1        | 19:36340176  | 7  | c.C802T:<br>p.R268X       | Heterozygous | Tr*    | .; 0.000034; 6.1x10⁻⁵;<br>0.00002407  | • | 35    | 0.166  | 2.65  |
|     | COQ2         | 4:84188827   | 6  | c.G1013A:<br>p.G338E      | Heterozygous | NS     | .; .; .; 0.00001133                   | Ρ | 23.6  | 0.125  | 4.77  |
|     | CUBN         | 10:16918949  | 57 | c.A9053C:<br>p.Y3018S     | Heterozygous | NS     | .; 0.0001; 6.1 x10⁻⁵; 0.0001          | D | 23.2  | 0.24   | 3.39  |
|     | TTC21<br>B   | 2:166805994  | 3  | c.C172T:<br>p.R58X        | Heterozygous | Tr*    | .; 0.000058; 0.0002;<br>0.000040      | • | 36    | 0.751  | 4.52  |
| 85  | NPHS1        | 19:36339251  | 10 | c.C1219T:<br>p.R407W      | Homozygous   | NS     | .; 8.2x10 <sup>-6</sup> ; 0; 0.000020 | D | 27    | 0.207  | 3.29  |
|     | ANKS6        | 9:101558508  | 1  | c.G266A:<br>p.G89D        | Homozygous   | NS     | .; .; .; 0                            | В | 27.5  | 0.069  | 3.36  |
|     | KANK2        | 19:11304445  | 4  | c.G311C:<br>p.G104A       | Heterozygous | NS     | 0.0004; 0.0005; 0.0037;<br>0.0004     | D | 13.59 | -0.083 | 4.38  |
| 146 | NPHS1        | 19:36333089  | 19 | c.G2600A: p.G867D         | Homozygous   | NS     | .; 0.000022; 0.0001;<br>0.000016      | D | 28.7  | 0.74   | 3.88  |
|     | KANK1        | 9:710861     | 7  | c.T95C:<br>p.F32S         | Heterozygous | NS     | 0.0006; 0.0004; 0.0023;<br>0.0003     | Ρ | 12.73 | 0.092  | 3.58  |

INDIAN PEDIATRICS

| 150 | NPHS1        | 19:36321958  | 27 | с.С3478Т:<br>p.R1160Х  | Homozygous   | Tr*    | .; 0.000066; 0.0002;<br>0.00009943                                       | • | 37    | 0.251  | 3.74  |
|-----|--------------|--------------|----|------------------------|--------------|--------|--------------------------------------------------------------------------|---|-------|--------|-------|
| 154 | OSGEP        | 14:20920566  | 2  | c.A157T:<br>p.I53F     | Homozygous   | NS     | .; 2.47x10⁻⁵; 0.000182;<br>1.22x10⁻⁵                                     | В | 15.82 | -0.4   | 0.619 |
|     | ANLN         | 7:36459872   | 11 | c.G1964A:<br>p.R655Q   | Heterozygous | NS     | .; 0.000016; 0.0001; 7.96<br>x10 <sup>-6</sup>                           | Ρ | 29.3  | 0.455  | 4.95  |
|     | MAGI2        | 7:77649189   | 22 | c.G3811A:<br>p.A1271T  | Heterozygous | NS     | 0.0004; 0.0002; 0.0012;<br>0.0002                                        | Ρ | 28.3  | -0.075 | 4.59  |
| 157 | NPHS1        | 19:36333370  | 18 | c.C2417A:<br>p.A806D   | Homozygous   | NS     | .; 8.24 x10 <sup>-6</sup> ; 0; 7.95 x10 <sup>-6</sup>                    | D | 23.7  | 0.374  | 4.46  |
|     | INF2         | 14:105181022 | 21 | c.G3523A:<br>p.D1175N  | Heterozygous | NS     | .; 0.000017; 0; 8.15 x10 <sup>-5</sup>                                   | D | 19.12 | 0.097  | 4.73  |
|     | NPHP4        | 1:5937173    | 20 | c.C2797T:p.R933W       | Heterozygous | NS     | .; 0.0000416; 0; 0.00002938                                              | Р | 16.48 | -1.152 | -9.61 |
| 162 | NPHS1        | 19:36333089  | 19 | c.G2600A:p.G867D       | Homozygous   | NS     | .; 0.000022; 0.0001;<br>0.000016                                         | D | 28.7  | 0.74   | 3.88  |
|     | ALMS1        | 2:73747129   | 11 | c.C9764G:p.S3255C      | Heterozygous | NS     | 0.001; 0.0006; 0.0044;<br>0.0005                                         | D | 23.4  | -0.174 | 3.76  |
|     | COL4A<br>1   | 13:110817289 | 46 | c.G4070C:p.G1357A      | Heterozygous | NS     | · · · ·<br>·, ·, ·, ·, ·                                                 | D | 26    | 0.667  | 4.3   |
|     | ITGB4        | 17:73739874  | 26 | c.C3043T:p.R1015C      | Heterozygous | NS     | .; 0.0001; 0.0007; 0.0001                                                | D | 28.9  | 0.186  | 2.94  |
|     | KANK1        | 9:742265     | 14 | c.C3757T:p.L1253F      | Heterozygous | NS     | .; .; .; 3.98 x10 <sup>-6</sup>                                          | D | 26.3  | 0.472  | 4.28  |
| 163 | NPHS1        | 19:36335272  | 15 | c.C2020T:p.P674S       | Homozygous   | NS     |                                                                          | D | 27    | 0.728  | 3.67  |
|     | KANK1        | 9:710853     | 7  | c.87delC:<br>p.D29fs   | Heterozygous | fs*del | .; 8.4x10 <sup>-6</sup> ; 6.8 x10 <sup>-5</sup> ; 3.99 x10 <sup>-6</sup> | • |       | •      |       |
|     | VPS33<br>B   | 15:91561079  | 2  | c.C133G:<br>p.L45V     | Heterozygous | NS     | 0.0002; 0.000058; 0.0004;<br>0.000043                                    | D | 25.7  | 0.668  | 5.45  |
| 165 | NPHS1        | 19:36339610  | 9  | c.C1099T:<br>p.R367C   | Heterozygous | NS     | .; 0.00003308; 0.0001;<br>0.00003978                                     | D | 28.7  | 0.528  | 4.37  |
|     | NPHS1        | 19:36341349  | 5  | c.527-2A>G             | Heterozygous | Sp     | .; .; .; .                                                               |   | 22.6  | 0.788  | 4.09  |
|     | ALMS1        | 2:73680160   | 8  | c.C6503T:<br>p.S2168L  | Heterozygous | NS     | 0.0002; 0.000075; 0.0005;<br>0.000060                                    | D | 25.2  | 0.094  | 3.48  |
| 168 | NPHS1        | 19:36330221  | 22 | c.C3027G:<br>p.Y1009X  | Homozygous   | Tr*    | .; 8.24 x10⁻6; 6.1 x10⁻5; 7.95<br>x10⁻ <sup>6</sup>                      | • | 38    | 0.513  | 1.06  |
|     | ALMS1        | 2:737997787  | 17 | c.A10771C:<br>p.T3591P | Heterozygous | NS     | 0.0008; 0.0003; 0.0025;<br>0.0003                                        | D | 18.17 | -0.413 | -1.18 |
|     | ARHGA<br>P24 | 4:86921681   | 10 | c.G2053A:<br>p.D685N   | Heterozygous | NS     | 0.0008; 0.0009; 0.0064;<br>0.0009                                        | Ρ | 29.3  | 0.295  | 5.56  |

NGS FOR CONGENITAL NEPHROTIC SYNDROME

|     | CRB2        | chr9:126135651<br>Exon-10 | 10 | c.2841delG:<br>p.P947fs                  | Heterozygous | fs*del | ., ., ., .                                      |                     | • •  |         |      |       |
|-----|-------------|---------------------------|----|------------------------------------------|--------------|--------|-------------------------------------------------|---------------------|------|---------|------|-------|
| 169 | NPHS1       | 19:36321958               | 27 | c.C3478T:<br>p.R1160X                    | Homozygous   | Tr*    | .; 0.000066; 0.000<br>0.000099                  | 02; .               | 37   | 7 0.    | 251  | 3.74  |
|     | CD151       | 11:837277                 | 6  | c.A379C:<br>p.K127Q                      | Heterozygous | NS     | 0.0002; 0.0004; 0.00;<br>0.0004                 | 31; E               | B 18 | 5.64 -0 | .087 | 4.26  |
|     | TTC21<br>B  | 2:166747104               | 24 | c.C3148T:<br>p.R1050W                    | Heterozygous | NS     | .; .; .; 3 <b>.99</b> x10 <sup>-6</sup>         | [                   | D 34 | 4 0.    | 891  | 4.76  |
| 173 | NPHS1       | 19:36321958               | 27 | c.C3478T:<br>p.R1160X                    | Heterozygous | Tr*    | .; 0.000066; 0.000<br>0.000099                  | 02; .               | 37   | 7 0.    | 251  | 3.74  |
|     | NPHS1       | 19:36333089               | 19 | c.G2600A:<br>p.G867D                     | Heterozygous | NS     | .; 0.000022; 0.000<br>0.000016                  | 01; [               | D 28 | 3.7 0.  | 74   | 3.88  |
|     | ITGA3       | 17:48153013               | 12 | c.C1588T:<br>p.R530C                     | Heterozygous | NS     | .; 0.00002481; 6.1x10<br>0.00002389             | 0 <sup>-5</sup> ; [ | D 27 | 7.8 0.  | 244  | 5.54  |
|     | SYNPO       | 5:150036540               | 3  | c.G2603A:<br>p.G868E                     | Heterozygous | NS     | 0.0002; 0.0004; 0.00<br>0.0001                  | 19; [               | D 17 | 7.24 0. | 444  | 4.91  |
| 180 | NPHS1       | 19:36337056               | 12 | c.C1481A:<br>p.S494X                     | Heterozygous | Tr*    | .; .; .; .                                      | •                   | 39   | 90.     | 581  | 4.15  |
|     | NPHS1       | 19:36340541-<br>36340548  | 6  | c.614_621delinsTT:<br>p.T205_A207delinsI | Heterozygous | fs*del | .; 0.00001653; 0.000<br>0.0000199               | 01; .               | •    | •       |      | •     |
|     | NPHP4       | 1:5937221                 | 20 | c.2749delG:p.E917fs                      | Heterozygous | fs*del | ., ., ., .                                      |                     | -    |         |      |       |
| 181 | NPHS1       | 19:36332715               | 20 | c.T2717C:p.I906T                         | Homozygous   | NS     | .; .; .; .                                      | [                   | D 20 | 6.8 0.  | 821  | 4.78  |
|     | FN1         | 2:216271099               | 19 | c.C2848T:p.H950Y                         | Heterozygous | NS     | .; 8.24x10 <sup>-6</sup> ; 6.1x10<br>0.00003183 | 0 <sup>-5</sup> ; F | P 24 | 4.6 0.  | 271  | 5.14  |
| 196 | NPHS1       | 19:36333089               | 19 | c.G2600A:p.G867D                         | Homozygous   | NS     | .; 0.00002173; 0.000<br>0.00001634              | 01; [               | D 28 | 3.7 0.  | 74   | 3.88  |
|     | KANK2       | 19:11304341               | 4  | c.G415T:p.A139S                          | Heterozygous | NS     | ., ., ., .                                      | [                   | D 22 | 2.6 0.  | 161  | 4.38  |
|     | NPHP4       | 1:5947516                 | 18 | c.G2315A:p.R772H                         | Heterozygous | NS     | .; 0.00001685; 0; 8.06x10 <sup>-6</sup>         | <sup>3</sup> [      | D 33 | 30.     | 754  | 5.46  |
| 201 | NPHS1       | 19:36333089               | 19 | c.G2600A:p.G867D                         | Homozygous   | NS     | .; 0.00002173; 0.000<br>0.00001634              | 01; [               | D 28 | 3.7 0.  | 74   | 3.88  |
|     | EXT1        | 8:119122904               | 1  | c.G382T:p.A128S                          | Heterozygous | NS     | .; 0.00001648; 0.00<br>0.0000159                | 01; E               | 3 12 | 2.59 -0 | .582 | 5.47  |
|     | LRP2        | 2:170068592               | 37 | c.C6166T:p.R2056W                        | Heterozygous | NS     | 0.0004; 0.0001; 0.00<br>0.0001                  | 01; [               | D 34 | 4 0.    | 815  | 5.88  |
| 217 | ARHGD<br>IA | 17:79826519               | 7  | c.T736G:p.C246G                          | Heterozygous | NS     | · · · ·<br>·, ·, ·, ·                           |                     | 1(   | ).02 1. | 931  | 0.929 |
|     | FAT1        | 4:187527277               | 17 | c.G10297A:p.V3433I                       | Heterozygous | NS     | 0.0006; 0.0002; 0.00<br>0.0002                  | 14; E               | 3 19 | 9.37 -0 | .266 | 5.56  |
|     | ITGB4       | 17:73727328               | 10 | c.G1094A:p.R365Q                         | Heterozygous | NS     | .; 0.0001; 0.0006; 0.0001                       | F                   | 24   | 4.3 -0  | .129 | 4.12  |

INDIAN PEDIATRICS

## NGS FOR CONGENITAL NEPHROTIC SYNDROME

Joshi, et al.

| 228 | NPHS1      | 19:36333089              | 19 | c.G2600A:p.G867D                         | Heterozygous | NS     | .; 0.00002173; 0.00<br>0.00001634          | 001;              | D | 28.7 | 0.74  | 3.88 |
|-----|------------|--------------------------|----|------------------------------------------|--------------|--------|--------------------------------------------|-------------------|---|------|-------|------|
|     | NPHS1      | 19:36340541-<br>36340548 | 6  | c.614_621delinsTT;<br>p.T205_A207delinsI | Heterozygous | fs*del | .; 0.00001653; 0.00<br>0.0000199           | 001;              |   | •    |       | •    |
|     | COQ6       | 14:74427966              | 9  | c.G907A:p.A303T                          | Heterozygous | NS     | 0.0002; 0.0003; 0.00<br>0.0003             | 023;              | В | 24.1 | 0.071 | 5.33 |
|     | COQ9       | 16:57490845              | 5  | c.A524G:p.K175R                          | Heterozygous | NS     | 0.0002; 0.0001; 0.00<br>0.0001             | 009;              | Р | 23.6 | 0.464 | 5.68 |
|     | ITGB4      | 17:73745039              | 27 | c.C3229T:p.R1077C                        | Heterozygous | NS     | .; 0.00002598;<br>0.00003209               | 0;                | D | 32   | 0.584 | 4.93 |
| 235 | NPHS1      | 19:36333089              | 19 | c.G2600A:p.G867D                         | Homozygous   | NS     | .; 0.00002173; 0.00<br>0.00001634          | 001;              | D | 28.7 | 0.74  | 3.88 |
|     | LAMB2      | 3:49162269               | 21 | c.A2974G:p.I992V                         | Heterozygous | NS     | 0.0004; 0.0005; 0.00<br>0.0005             | 038;              | D | 23.9 | 0.562 | 4.36 |
| 240 | WT1        | 11:32450063              | 2  | c.T749A:p.M250K                          | Heterozygous | NS     | 0.0002; 0.0003; 0.00<br>0.0002             | 019;              | В | 24.4 | 0.09  | 5.62 |
| 266 | No priorit | ized variations          |    |                                          |              |        |                                            |                   |   |      |       |      |
| 267 | NPHS1      | 19:36339610              | 9  | с.С1099Т:<br>p.R367С                     | Heterozygous | NS     | .; 0.000033; 0.00<br>0.0000398             | 001;              | D | 28.7 | 0.528 | 4.37 |
|     | NPHS1      | 19:36341889              | 4  | c.C500T:<br>p.P167L                      | Heterozygous | NS     | .; 8.3x10⁻⁶; 6.1x10⁻⁵; 3.9<br><sup>6</sup> | )x10 <sup>-</sup> | D | 27.6 | 0.555 | 5.99 |
|     | FAT1       | 4:187540958              | 10 | c.C6782T:<br>p.T2261M                    | Heterozygous | NS     | 0.001; 0.0009; 0.00<br>0.0008              | 033;              | D | 24.6 | 0.624 | 5.05 |
| X1  | LAMB2      | 3:49168499               |    | c.C799T; p.R267Ter                       | Homozygous   | Tr     | -, 0, 0, -                                 |                   | D | 36   | 0.85  | 4.76 |

B benign; D deleterious; del deletion; fs frameshift; NS non synonymous; P pathogenic; Tr truncating

| Haplotype | Chromosomal    | SNP ID      | Reference allele A | Alternate; allele | P-value*   |
|-----------|----------------|-------------|--------------------|-------------------|------------|
| region    | Coordinates    |             |                    | В                 |            |
| 5'-H2     | chr19:35850672 | rs142125121 | Т                  | С                 | 0.0268     |
|           | chr19:35863180 | rs201159994 | A                  | G                 | 0.0005     |
|           | chr19:35863226 | rs150552589 | G                  | T                 | 2.2498E-08 |
| 5'-H1     | chr19:35898796 | rs112270905 | T                  | TC                | 7.0269E-11 |
|           | chr19:35898899 | rs16970294  | A                  | G                 | 7.0269E-11 |
|           | chr19:35899037 | rs113510419 |                    | С                 | 7.0269E-11 |
|           | chr19:35899068 | rs142160831 | GTGA               | G                 | 7.0269E-11 |
|           | chr19:35991373 | rs2293695   | C                  | Т                 | 0.025      |
|           | chr19:35998362 | rs4254439   | Т                  | G                 | 0.0459     |
|           | chr19:36004106 | rs4806163   | A                  | G                 | 1.5754E-06 |
|           | chr19:36004171 | rs12460932  | С                  | A                 | 0.0459     |
|           | chr19:36017928 | rs10775583  | G                  | С                 | 0.0005     |
|           | chr19:36018272 | rs12461911  | С                  | Т                 | 0.0001     |
|           | chr19:36033460 | rs2239945   | С                  | Т                 | 0.0001     |
| 5'-H      | chr19:36048741 | rs2230181   | G                  | Т                 | 0.0152     |
|           | chr19:36157740 | rs61741212  | С                  | Т                 | 0.0332     |
|           | chr19:36168914 | rs2285421   | Т                  | С                 | 2.0518E-05 |
|           | chr19:36218478 | rs11670414  | С                  | Т                 | 0.0047     |
|           | chr19:36224705 | rs231591    | A                  | G                 | 5.3275E-08 |
|           | chr19:36233470 | rs3746278   | G                  | A                 | 0.0113     |
|           | chr19:36234489 | rs28656784  | Т                  | С                 | 0.0332     |
|           | chr19:36235431 | rs3761087   | A                  | G                 | 0.0256     |
|           | chr19:36236909 | rs10402601  | G                  | С                 | 0.0256     |
|           | chr19:36246418 | rs11549030  | С                  | G                 | 0.0429     |
|           | chr19:36269915 | rs231230    | Т                  | С                 | 0.0081     |
|           | chr19:36270052 | rs231231    | A                  | G                 | 0.0081     |
|           | chr19:36273534 | rs2291067   | G                  | А                 | 0.0035     |
|           | chr19:36275074 | rs62112163  | G                  | А                 | 0.0035     |
|           | chr19:36278470 | rs231235    | С                  | G                 | 0.0081     |

## Supplementary Table SV List of 44 single nucleotide polymorphisms (SNP), flanking p.Gly867Asp, selected for haplotype analysis

INDIAN PEDIATRICS

## NGS FOR CONGENITAL NEPHROTIC SYNDROME

## Joshi, et al.

|          | chr19:36321910 | rs731934   | G | A | 0.001      |
|----------|----------------|------------|---|---|------------|
|          | chr19:36322270 | rs2071327  | С | Т | 0.0007     |
|          | chr19:36322509 | rs466452   | G | A | 1.0815E-05 |
| Mutation | chr19:36333089 | G867D      | С | Т | 3.53E-16   |
| 3'-H1    | chr19:36351935 | rs35854130 | G | Т | 0.00006686 |
|          | chr19:36549684 | rs61742664 | G | A | 0.015      |
| 3'-H2    | chr19:36574063 | rs45567532 | С | Т | 7.6486E-08 |
|          | chr19:36577579 | rs4806263  | С | Т | 7.6486E-08 |
|          | chr19:36577742 | rs77938609 | G | A | 0.015      |
|          | chr19:36583651 | rs61494900 | G | A | 7.6486E-08 |
|          | chr19:36590329 | rs2285745  | Т | С | 0.0015     |
|          | chr19:36594063 | rs17851502 | С | Т | 7.6486E-08 |
|          | chr19:36595436 | rs1008328  | A | С | 0.0044     |
|          | chr19:36603703 | rs2072605  | Т | A | 0.0005     |
|          | chr19:36674305 | rs4805162  | A | G | 0.0066     |
|          | chr19:36727365 | rs2070132  | G | A | 0.0013     |

# Supplementary Table SVI Haplotype analysis of single nucleotide polymorphism markers flanking the mutation, indicating segregation of a core haplotype along with the Gly867Asp variant

| No. | ~12 kbp region              | ~135 kbp region           | Core-Haplotype (~500 kbp re |       | ~153 kbp region           | Allele                   |       |
|-----|-----------------------------|---------------------------|-----------------------------|-------|---------------------------|--------------------------|-------|
|     | rs142125121-<br>rs150552589 | rs112270905-<br>rs2239945 | rs2230181-rs466452          |       | rs35854130-<br>rs61742664 | rs45567532-<br>rs2070132 | Count |
|     | 5'-H2                       | 5'-H1                     | 5'-H                        | G867D | 3'-H1                     | 3'-H2                    |       |
| 1   | ABB                         | BBBBAAAABBB               | AAAAAAAAAAAAAAAAAAAAAA      | В     | BA                        | BBABBBBBAB               | 13    |
| 2   | ABB                         | BBBBAAAABBB               | AAAAAAAAAAAAAAAAAAAAAA      | В     | BA                        | AAAABABBAB               | 1     |
| 3   | AAA                         | BBBBAAAABBB               | AAAAAAAAAAAAAAAAAAAAAA      | В     | BA                        | BBABBBBBAB               | 1     |
| 4   | AAA                         | AAAABABABAA               | ААААААААААААААААА           | В     | BA                        | AAAAABABA                | 2     |
| 5   | BAA                         | AAAAABAABBB               | АААААААААААААААА            | A     | BA                        | BBABBBBBAB               | 1     |
| 6   | AAA                         | AAAABABABBB               | ААААААААААААААААА           | A     | AA                        | AAAAABAAA                | 1     |
| 7   | BAA                         | AAAAAAABBB                | АААААААААААААААА            | A     | AB                        | AABAAABAAB               | 1     |
|     | Other haplotypes            |                           |                             |       |                           |                          | 46    |

\*Allele A refers to the major allele and B refers to the minor allele. In cases of Gly867Asp, B is a mutant allele. The grey shaded area refers to the mutant allele associated core haplotype

| Author, year          | Ν   | Method of sequencing      | Ethnicity                         | Etiology, % |       |     |       |       |                    |         |
|-----------------------|-----|---------------------------|-----------------------------------|-------------|-------|-----|-------|-------|--------------------|---------|
|                       |     | (number of genes)         |                                   | NPHS1       | NPHS2 | WT1 | PLCE1 | LAMB2 | Others             | Unknown |
| Koziell, 2002 [xi]    | 41  | Sanger (2)                | British, Maltese, Turkish, Asian  | 73          | 10    | NT  | NT    | NT    | NT                 | 15      |
| Sako, 2005 [xii]      | 13  | Sanger (4)                | Japanese                          | 15          | 8     | 0   | NT    | NT    | 0 for ACTN4        | 77      |
| Machuca, 2010 [xiii]  | 117 | Sanger (8)                | West Europe; Turkey; North Africa | 61          | 15    | 2   | 2     | 2     | 0                  | 19      |
| Schoeb, 2010 [xiv]    | 67  | Sanger (1)                | Worldwide                         | 58          | Exc   | Exc | NT    | NT    | NT                 | 42      |
| Buscher, 2010 [xv]    | 62  | Sanger, panel (10)        | German                            | 53          | 13    | 23  | 2     | 5     | 2 (ARGHDIA)        | 3       |
| Santin, 2011 [xvi]    | 15  | Sanger (8)                | Spanish                           | 80          | 7     | 13  | 0     | NT    | NT                 | 0       |
| Lee, 2011 [xvii]      | 15  | Not stated                | Korean                            | 40          | 7     | 40  | 0     | 7     | 0                  | 7       |
| Mbarek, 2011 [xviii]  | 12* | Linkage, Sanger (6)       | Tunisian                          | 60          | 0     | 0   | 0     | 40    | 0 for CD2AP        | 0       |
| Cil, 2015 [xix]       | 80  | Sanger (4)                | Turkish; Middle East; East Europe | 46          | 16    | 6   | NT    | 4     | NT                 | 28      |
| Sadowski, 2015 [xx]   | 235 | Next-generation           | Worldwide                         | 40          | 11    | 9   | 2     | 6     | 3                  | 31      |
| Trautman, 2015 [xxi]  | 98  | Sanger or next-generation | Europe, Middle East, Latin        | NA          | NA    | NA  | NA    | NA    | NA                 | 34      |
|                       |     |                           | America                           |             |       |     |       |       |                    |         |
| Sen, 2017 [xxii]      | 31  | Next-generation           | Worldwide                         | 39          | 6     | 3   | 0     | 10    | 0                  | 42      |
| Wang, 2017 [xxiii]    | 12  | Next-generation           | Chinese                           | 50          | 0     | 8   | 0     | 8     | 8 (ADCK4)          | 25      |
| Li, 2018 [xxiv]       | 12  | Sanger or next-generation | Chinese                           | 67          | 0     | 8   | 0     | 0     | 8 (COQ6)           | 17      |
| Sharief, 2019 [xxv]   | 11  | Not stated                | Arab, Asian, African              | 64          | 0     | 9   | 0     | 27    | 0                  | 0       |
| Nishi, 2019 [xxvi]    | 36  | Not stated                | Japanese                          | 42          | 3     | 22  | 0     | 8     | 3 (CRB2)           | 22      |
| Dufek, 2019 [xxvii]   | 69  | Not stated                | European                          | 80          | 1     | 13  | 1     | 3     | 1 (SGPL1)          | 14      |
| Berody, 2019 [xxviii] | 55  | Sanger (5)                | European                          | 65          | 9     | 7   | 2     | 0     | 0                  | 16      |
| Sinha, 2019 [xxix]    | 15  | Next generation (27) or   | Indian                            | 53          | 0     | 7   | 7     | 0     | 0                  | 33      |
|                       |     | Sanger (<4)               |                                   |             |       |     |       |       |                    |         |
| Nagano, 2020 [xxx]    | 13  | Targeted next generation  | Japanese                          | 31          |       | 15  |       | 31    | 8 ( <i>LAMA5</i> ) | 15      |
| Present study         | 34  | Next-generation           | Indian                            | 74          | 4     | 0   | 4     | 4     | 4 (OSGEP)          | 11      |

## Supplementary SVII Studies examining the genetic basis of congenital nephrotic syndrome in 10 or more patients

Exc excluded; NA not available; NT not tested

Only latest and largest paper for each group was included, unless overlap of patients between studies appeared unlikely \*Refers to 12 patients from 5 families

\_\_\_\_

# Supplementary Table SVIII Frequency of haplotype markers of 5'-H1/5'H/3'-H1/3'-H2 region including Gly867Asp variant, (as indicated in Supplementary Table S6) from the1000 Genome population dataset

| Sub-populations                           | South Asian | European | East Asian | American | African |
|-------------------------------------------|-------------|----------|------------|----------|---------|
| Number of disease core haplotype carriers | 2           | 20       | 1          | 7        | 1       |
| Number of subjects                        | 489         | 503      | 504        | 347      | 661     |
| Frequency, %                              | 0.20        | 1.98     | 0.09       | 1.008    | 0.07    |



**Supplementary Figure S1** Heatmap representing prioritized variants per sample. Each column represents a patient while rows indicate genes. Individual cells are colored according to zygosity of variant while the type of change is indicated at the top of each column.

| NPHS1      | G867D                          | NPHS1         | P6/4S                               | NPHS1      | A806D                            |
|------------|--------------------------------|---------------|-------------------------------------|------------|----------------------------------|
| HUMAN      | TSSATLHCRAR G VPNIVFTWTKNOVP   | HUMAN         | VTAVFOGEALL P VSVSANPAPEAENW        | HUMAN      | SRGPTGRLRIHH & KLAOAGAYOCIVD     |
| RAT        | TSSATLHCRAR G VPNIDFTWTKN6VP   | PAT           | VTVA/EOGOVI I P VSVSANDADEAEMJ      | RAT        | SKESTERI RTRO A KI SOAGAVOCTVD   |
| BOVINE     | TSSATLHCRAR G VPNIVFTWTKNGVP   | BOUTHE        | VTAVEOGEALL D VOVCANDADEAEMU        | MAN PAGE   | PROPERTIAN A REPORT OF           |
| CHIMPANZEE | TSSATLHCRAR G VPNIVFTWTKN6VP   | CURMENDER     | VIAVEQUEALL P VSVSANPAPEARNN        | CUTMBANJEE | EDEDTEDI DTULI A VI AGACAVOCTVO  |
| ZEBRA FISH | SNDANVVCQAQ G VPRVQFRWAKNGFP   | CHIMPANZEE    | VIAVEQUEALL P VSVSANPAPEARAW        | TERRA ETCU | EDOCTON TWE N TODDACAGOCTAD      |
|            |                                | ZEBRA FISH    | VQVIEDETATL PAKVSANPDEITCEW         | ZEBKA FISH |                                  |
| NPHS1      | Q1/8X                          | NBU61         | 10047                               | NPHS1      | H617R                            |
| HUMAN      | PAPDITILLSG Q TISDISANVNE6SQ   | WEUST         | 19061                               | LIMAN      |                                  |
| RAT        | PAPDITFIQSE R TILDVSSNVNEESE   | HUMAN         | HQGGVHSSLLT I ANVSAAQDYALFTC        | D A 27     | AAAAKSVELQVSSKD HI QQKVICKAHSK   |
| BOVINE     | PAPDITFLLSG Q TISGISANVNEGSQ   | RAT           | HQGVVHSSLLT I ANVSAAQDYALFKC        | KA I       | AASKSVFLKVSSKU HI QUKVICKAHSE    |
| CHIMPANZEE | PAPDITILLS6 Q TISDISANVNE6SQ   | BOVIN         | HQGGVHSSLLT I ANVSAAQDYALFTC        | BOATINE    | AAARSVLLKLSSKD H GMRVICSAHS      |
| ZEBRA FISH | PPAEITNFRDG E ELLESESYTMS6SQ   | CHIMPANZEE    | HQGGVHSSLLT I ANVSAAQDYALFTC        | CHIMPANZEE | AAARSVLLQVSSRD H GQRVTCRAHSA     |
|            |                                | ZEBRA FISH    | STGTIHTSILT V INVSAALDYAIFTC        | ZEBRA FISH | SRTSKLSLTLESHH W RKRITCQAFSN     |
| NPHS1      | D713G                          |               |                                     | MDLIS1     | P268Y                            |
| HUMAN      | GALHLWINTRA D DGLYQLHCQNSEGT   | NPHS1         | R864H                               | NEUST      | N200A                            |
| RAT        | GALQLWINVTRA D DGFYQLHCQNSEGT  | HUMAN         | STSSATLHC R ARGVPNIVFTWTKNGF        | HUMAN      | GQSLELPCVA R GGNPLATLQWLKNGQ     |
| ROATHE     | GUTATINA INV D DOLAOLHCONPERI  | RAT           | STSSATLHC R ARGVPNIDFTWTKNGF        | RAT        | GENLELPCTA R GGNPPATLQWLKNGK     |
| CHIMPANZEE | GALHLWNVTRA D DGLYQLHCQNSEGT   | BOVTNE        | STSSATINC P ARGVPNTVETUTKNGE        | BOVINE     | GQSLELLCTA R GGNPLATLQWLKNGQ     |
| ZE8RA FISH | WTLEIVWVSRR D GGDYIIECSNAEGS   | CUTMDAMZEE    |                                     | CHIMPANZEE | GQSLELFCVA R GGNPLATLQWLKNGQ     |
|            |                                | ZERDA ETCU    |                                     | ZEBRA FISH | GSFLKVVCMS Y GGNPLATLHWTKNGE     |
| NPHS2      | G140E                          | 20004 1100    | CONDUCTOR & AGORT IN SIL MANNED     |            |                                  |
| HUMAN      | EYERVIIFRLGHLLPGRAKGP G LFFFLP | MBUS1         | D267C                               | NPHS1      | F1207K                           |
| RAT        | EYERVIIFRLGHLLPGRAKGP G LFFFLP | HIMAN         | ASASATENEMATIST VERSE DI DUVIT DU   | HIMAN      |                                  |
| ZEBRA FISH | EHERAVKFRLGHLLKKRPRGP G LMFYLP | DAT           | GSVEGSENVM/TLOCI TVSS BLODVI I DU   | DAT        |                                  |
| CHIMPANZEE | EYERVIIFRLGHLLPGRAKGP G LFFFLP | DOM THE       | GSASOGENKMATI COTTAGE DI DOVI I DIJ | DOM/THE    |                                  |
| BOVINE     | EYERVIIFRLGHLLPGRAKGP G LFFFLP | CUINDANZEE    | GSASQSERRAVILSCURVS P DRVII BU      | CUTMDAN7CC |                                  |
| OSGEP      | 153°                           | ZERDA ETCU    | GSEEAVEGEETNI SCSTSSS N PRVEERN     | CHIMPANZEE |                                  |
| HUMAN      | PRRTYVTPPGTGFLPGDTARHHRAV I LD | 650100 1 2011 | dai Entenezzaeara i a si finzia     | ZEDRA FISH | PUAPESITTE O RATSKADADALIOA      |
| ZEERA FISH | PRRTYITPPGQGFLPGETAKHHRSV I LT | NPHS1         | \$494X                              | NPHS1      | R407W                            |
| RAT        | PRRTYVTAPGTGFLPGDTAFHHRAV I LD | HUMAN         | SLMWYXDSRTVTESRLPDE S RRVHLGSVEK    | HIMAN      | HTSMSNITELA R REDNGLTLTCEAES     |
| BOVINE     | PRRTYVTPPGTGFLPGDTARHHRAV I LD | RAT           | SI TWEKDSRPVSEPROPOE P RRVOI GSVEK  | DAT        | HTSMSNI TELV R REDAGL PLTCEAES   |
| CHIMPANZEE | PRRTYATPPGTGFLPGDTARHHRAV      | BOVTNE        | SI TWYXDSRTVTEPRPPOF P 8RV0I GSVEK  | BOM TN     |                                  |
| 01/051     | Q1422X                         | CHIMPANZEE    | SLMWYKDSRTVTESRLPDE S RRVHLGSVEK    | CUTMDAN7EE |                                  |
| PLEEL      |                                | ZEBRA FISH    | OLTWLKNNKVVLTASKO                   | 7ERDA ETCU |                                  |
| MUMAN      | NKTSGKSSCEGIR Q TWEESSSPLNPTT  |               | T0056-104                           | ZEDNA FISH | PHIASULINKA S KEDNOLSEVER N      |
| BOUTM      | NETSGESSCEGN O AUEDSAESWIRTT   | NPHS1         | 120515-31                           | NPHS1      | R1160X                           |
| ZEBRA FISH | VRAPGKASLEGTR M NSED-OLCLSPST  | HUMAN         | QQKLFTVEATARV T PRSSDNRQLLVCEASSPA  | HIMAN      |                                  |
| CHIMPANZEE | NKTSGKSSCEGIR Q TWEESSSPLNPAT  | RAT           | EEKLCITEAEARV I PQSSDNGQLLVCEGSNPA  | DAT        |                                  |
|            |                                | BOVINE        | QQKLFTTEATARV T PQSSDNGQLLVCEGSSPA  | DOUTNE     |                                  |
| NPHS1      | P167L                          | CHIMPANZEE    | QQKLFTVEATARV T PLSSDNRQLLVCEASSPA  | CUTMDAN7EE |                                  |
| CEIMAN     |                                | ZEBRA FISH    | QDKLQNTHAEVTI R ARSSDDTRRLTCRAKNPA  | ZERDA ETCU |                                  |
| DAT        |                                |               |                                     | ZEDRA FISH | ENPHT TIP TEAT SPAL TAPPEDPEDT D |
| RINTING    |                                | LAMB2         | R267*                               |            |                                  |
| CHIMDANZEE | P APOTTI I SGOTTSDISANVNEGSOO  | HUMAN         | GDNLLDPRREI R EKYYYALYELV           |            |                                  |
| ZEBRA ETSH | P FAETTTERDGEELLESESYTMSGSOD   | RAT           | GDNLLDPRREI R EKYYYALYELV           |            |                                  |
| 2200011201 |                                | CHTMPANZEE    | GONLI DERRET REKYYYALVELV           |            |                                  |
| NPHS1      | Y1009X                         | TERDA ETCU    | GONLI DEPDET K EKVYVAMYELV          |            |                                  |
| HUNAN      | GLCPSTR Y RVWLLASNALGDSGLADK   | ZEDNA FISH    | CONLLUSREET N ENTITAMITELV          |            |                                  |
| RAT        | GLKPSTR Y RIWLLASNALGDSGLTDK   | BOAINE        | GUNLLOPRREI R EKYYYALYELV           |            |                                  |
| BOVINE     | GLCPSTR Y RVWLLASNALGDSGLADK   |               |                                     |            |                                  |
| CHIMPANZEE | GLCPSTR Y RVWLLASNALGDSGLADK   |               |                                     |            |                                  |
| ZE8RA FISH | GLAPSTM Y NESVNALNSIGESSYADN   |               |                                     |            |                                  |

Supplementary Figure S2 Images indicating degree of conservation across species for variants to which pathogenicity was attributed

## SUPPLEMENTARY REFERENCES

iv Trautmann A, Lipska-Ziętkiewicz BS, Schaefer F. Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: The PodoNet registry. Front Pediatr 2018;6:200

v Lovric S, Fang H, Vega-Warner V, et al; Nephrotic Syndrome Study Group. Rapid detection of monogenic causes of childhood-onset steroidresistant nephrotic syndrome. Clin J Am Soc Nephrol 2014;9:1109-16

vii Karczewski KJ, Weisburd B, Thomas B, et al; The Exome Aggregation Consortium, Daly MJ, MacArthur DG. The ExAC browser: Displaying reference data information from over 60 000 exomes. Nucleic Acids Res 2017;45 (D1):D840-45

viii Karczewski KJ, Francioli L, Tiao G, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv 2019;531210;doi: https://doi.org/10.1101/531210

ix Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005;33:D514-7

x Richards S, Aziz N, Bale S, et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24

i Ha TS. Genetics of hereditary nephrotic syndrome: a clinical review. Korean J Pediatr 2017;60:55-63

ii Bierzynska A, McCarthy HJ, Soderquest K, et al. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int 2017;91:937-47

iii Sadowski CE, Lovric S, Ashraf S, et al; SRNS Study Group, Hildebrandt F. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2015;26:1279-89

vi 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature 2015;526:68-74

xi Koziell A, Grech V, Hussain S, et al. Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum Mol Genet 2002;11:379-88

xii Sako M, Nakanishi K, Obana M, et al. Analysis of NPHS1, NPHS2, ACTN4, and WT1 in Japanese patients with congenital nephrotic syndrome. Kidney Int 2005;67:1248-55

xiii Machuca E, Benoit G, Nevo F, et al. Genotype-phenotype correlations in non-Finnish congenital nephrotic syndrome. J Am Soc Nephrol 2010;21:1209-17

xiv Schoeb DS, Chernin G, Heeringa SF, et al; Gesselschaftfür Paediatrische Nephrologie Study Group. Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS). Nephrol Dial Transplant 2010;25:2970-6

xv Büscher AK, Beck BB, Melk A, et al. Rapid response to cyclosporin a and favorable renal outcome in nongenetic versus genetic steroidresistant nephrotic syndrome. Clin J Am Soc Nephrol 2016;11:245-53

xvi Santín S, Bullich G, Tazón-Vega B, et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2011;6:1139-48

xvii Lee JH, Han KH, Lee H, et al. Genetic basis of congenital and infantile nephrotic syndromes. Am J Kidney Dis 2011;58:1042-3

xviii Mbarek IB, Abroug S, Omezzine A, et al. Novel mutations in steroid-resistant nephrotic syndrome diagnosed in Tunisian children. Pediatr Nephrol 2011;26:241-9

xix Cil O, Besbas N, Duzova A, et al. Genetic abnormalities and prognosis in patients with congenital and infantile nephrotic syndrome. Pediatr Nephrol 2015;30:1279-87

xx Sadowski CE, Lovric S, Ashraf S, et al; SRNS Study Group, Hildebrandt F. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2015;26:1279-89

xxi Trautmann A, Bodria M, Ozaltin F, et al; PodoNet Consortium. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin J Am Soc Nephrol 2015;10:592-600

xxii Sen ES, Dean P, Yarram-Smith L, et al. Clinical genetic testing using a custom-designed steroid-resistant nephrotic syndrome gene panel: analysis and recommendations. J Med Genet 2017;54:795-804

xxiii Wang F, Zhang Y, Mao J, et al. Spectrum of mutations in Chinese children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 2017;32:1181-92

xxiv Li GM, Cao Q, Shen Q, et al. Gene mutation analysis in 12 Chinese children with congenital nephrotic syndrome. BMC Nephrol 2018;19:382

xxv Sharief SN, Hefni NA, Alzahrani WA, et al. Genetics of congenital and infantile nephrotic syndrome. World J Pediatr 2019;15:198-203

xxvi Nishi K, Inoguchi T, Kamei K, et al. Detailed clinical manifestations at onset and prognosis of neonatal-onset Denys-Drash syndrome and congenital nephrotic syndrome of the Finnish type. Clin Exp Nephrol 2019;23:1058-65

xxvii Dufek S, Ylinen E, Trautmann A, et al; ESPN Dialysis Working Group. Infants with congenital nephrotic syndrome have comparable outcomes to infants with other renal diseases. Pediatr Nephrol 2019;34:649-55

xxviii Bérody S, Heidet L, Gribouval O, et al. Treatment and outcome of congenital nephrotic syndrome. Nephrol Dial Transplant. 2019;34:458-67

xxix Sinha R, Vasudevan A, Agarwal I, et al. Congenital nephrotic syndrome in India in the current era: A multicenter case series. Nephron 2019;144:1-9

xxx Nagano C, Yamamura T, Horinouchi T, et al. Comprehensive genetic diagnosis of Japanese patients with severe proteinuria. Sci Rep 2020;10;270