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Surfactant replacement therapy is an
established effective and safe therapy for
immaturity-related surfactant deficiency [1].
Meta-analysis of randomized controlled trials

(RCTs) has confirmed that natural surfactant
administration in preterm infants with RDS reduces
mortality, decreases the incidence of pulmonary air leak
(pneumothorax and pulmonary interstitial emphysema),
and lowers the risk of bronchopulmonary dysplasia
(BPD) or death at 28 days of age [2].

Although RDS is characterized by the absence or
reduction of surfactant, there are other neonatal lung
disorders in which inadequate functional surfactant —
either by inactivation or inhibition of synthesis may be a
prominent element of the pathophysiology either by
inactivation or inhibition of synthesis. These include
meconium aspiration syndrome (MAS), pulmonary
hemorrhage, pneumonia, congenital diaphragmatic hernia
and BPD. The objective of this review is to critically
evaluate the role of surfactant replacement therapy in
neonatal respiratory conditions other than RDS.

MECONIUM ASPIRATION SYNDROME

The pathophysiology of meconium aspiration syndrome
(MAS) is complex and multifactorial. Constituents of

meconium, especially bile salts, can inactivate surfactant.
Inflammatory mediators, such as cytokines and
eicosanoids, can also inhibit surfactant, as can the protein
that leaks into the alveolar spaces [3]. Reduced
pulmonary blood flow may cause pulmonary ischemia,
with damage to the type II cells and reduced surfactant
production. Airway obstruction may cause increased
resistance and surfactant deficiency. Parenchymal lung
changes may require high ventilator support and
substantial supplemental oxygen, contributing to lung
injury.  Thus, surfactant replacement to break this vicious
cycle is an attractive option. Two approaches have been
attempted: surfactant replacement and surfactant lavage.

Surfactant Replacement

Evidence

In a meta-analysis of four trials (n=326) [4], surfactant
replacement by bolus or slow infusion in infants with
severe MAS had no statistically significant effect on
mortality [typical risk ratio (RR) 0.98, 95% CI 0.41 to
2.39]. The risk of requiring extracorporeal membrane
oxygenation (ECMO) was significantly reduced in a
meta-analysis of two trials (n=208); [typical RR 0.64,
95% CI 0.46 to 0.9]. Findlay, et al. [5], in a trial of 40
term neonates, reported a statistically significant
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reduction in the length of hospital stay (mean difference -
8 days, 95% CI -14 to -3 days). There was no statistically
significant reduction in duration of assisted ventilation,
duration of supplemental oxygen, air leaks, chronic lung
disease, need for oxygen at discharge or intraventricular
hemorrhage. Another meta-analysis incorporated eight
RCTs of surfactant for MAS with a total of 512 patients
[6]. It reported that surfactant significantly treatment
reduced oxygenation index, increased arterial oxygen/
alveolar oxygen ratio, shortened hospitalization days  and
decreased mortality rate. There was no statistical
difference in the durations of mechanical ventilation and
oxygen therapy, and the incidences of air leaks,
pulmonary hemorrhage  and intracranial hemorrhage
between the two groups.

Surfactant Lavage

An alternative approach to treatment of MAS is the
technique of lung lavage. This takes advantage of the
detergent-like property of pulmonary surfactant, in which
meconium might be solubilized and literally “washed”
from the lung. Thus, in addition to replenishing the lung
with functional surfactant, lavage might theoretically
remove particulate meconium and prevent some of the
pathophysiology attributed to obstruction and toxicity
[7]. Surfactant lavage has been performed in several
animal and human studies, with an optimal total lavage
fluid volume of 15 to 30 mL/kg [8-12]. The surfactant
was diluted in these studies in physiological saline to
obtain a final phospholipid concentration of 5 mg/mL
[13].

Evidence

In a recent meta-analysis of surfactant lavage, lung lavage
with diluted surfactant was shown to be beneficial to
infants with MAS in terms of reduction in composite
outcome of death or use of ECMO (RR 0.33, 95% CI 0.11
to 0.96; n=88) [14]. Additional controlled clinical trials
of lavage therapy should be conducted to confirm this
effect, to refine the method of lavage, and to compare
lavage with other approaches including surfactant bolus
therapy [14]. In a study of newborn lambs with
respiratory failure and pulmonary hypertension induced
by MAS, gas exchange and lung compliance were
improved by lung lavage with dilute surfactant but not by
bolus treatment [15]. Till further robust evidence is
available, lung lavage with surfactant in MAS should be
considered as an experimental therapy. In infants with
MAS, if ECMO is not available, surfactant
administration may reduce the severity of respiratory
illness, mortality and decrease the number of infants with
progressive respiratory failure requiring support with
ECMO.

Recent Developments
Henn, et al. [16] assessed the effect of surfactant
administration in 21 newborn pigs, preceded or not by
bronchoalveolar lavage (BAL) with dilute surfactant, on
pulmonary function in experimental severe MAS. BAL
with dilute surfactant, followed by an additional dose of
surfactant, produced significant improvements in arterial
blood gases  and pulmonary mechanics as compared with a
single dose of surfactant.

A synthetic surfactant (CHF5633), containing SP-B
and SP-C analogs, was tested in 26 newborn pigs for
resistance to meconium inactivation in comparison to
poractant alfa.

Surfactant was inactivated in both groups 6 hours after
meconium instillation, but CHF5633 was more resistant
than poractant alfa in terms of lipid peroxidation. This
study indicates that CHF5633 may be  as efficient as
poractant alfa in experimental MAS [17].

In a recent study by Mikolka, et al. [18], budesonide
was added into surfactant preparation curosurf to enhance
efficacy of the surfactant therapy in experimental model of
MAS. Combined therapy improved gas exchange,  and
showed a longer-lasting effect than surfactant-only
therapy. In conclusion, budesonide additionally improved
the effects of exogenous surfactant in experimental MAS.

PNEUMONIA

Surfactant inactivation may be associated with pneumonia
[19,20]. Facco, et al. [21] studied kinetics of surfactant’s
major component, disaturated-phosphatidylcholine
(DSPC), in neonatal pneumonia and concluded that DSPC
half-life and pool size were markedly impaired in
neonatal pneumonia, and that they inversely correlated
with the degree of respiratory failure.  In a small
randomized trial of surfactant rescue therapy, the subgroup
of infants with sepsis showed improved oxygenation and a
reduced need for ECMO compared with a similar group of
control infants [19]. Newborn infants with pneumonia or
sepsis receiving rescue surfactant also demonstrated
improved gas exchange compared with infants without
surfactant treatment [20].
PULMONARY HEMORRHAGE

Experimental data suggest that the molecular components
involved in pulmonary haemorrhage  can biophysically
inactivate endogenous lung surfactant, and exogenous
surfactant replacement may be capable of reversing this
process even in the continued presence of inhibitor
molecules [22,23].

Evidence
In two clinical studies, the mean oxygenation index
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improved in preterm and term infants who received
surfactant following clinically significant pulmonary
hemorrhage, with no clinical deterioration in any patient
[24,25]. Case reports have also described  the successful
use of surfactant treatment after idiopathic [26] or
iatrogenic [27] pulmonary hemorrhage.  However, a
recent  systematic review [28] found no randomized or
quasi-randomized trials evaluating the effects of
surfactant in pulmonary hemorrhage  in neonates,
suggesting the need for such trials.

Recent  Developments

A recent study evaluated the impact of surfactant upon in-
vitro clot formation in order to assess the role of
surfactant in the pathogenesis of pulmonary
haemorrhage. The presence of surfactant impairs
coagulation in vitro hence conferring greater risk of
pulmonary haemorrhage in extremely preterm infants
[29]. Bozdað, et al. [30], in an RCT compared efficacy of
two natural surfactants (poractant alfa and beractant) for
pulmonary haemorrhage  in 42 very low-birth-weight
(VLBW) infants. They concluded that both natural
surfactants improved oxygenation, and the type of
surfactant did not seem to have any effect on BPD and
mortality rates in these patients.

CONGENITAL DIAPHRAGMATIC HERNIA (CDH)

Pulmonary hypoplasia and pulmonary hypertension are
the hallmarks of CDH, but morphologic and biochemical
immaturity of the lung have also been noted, and
exogenous surfactant as adjuvant treatment for the severe
respiratory distress associated with this disease is an
attractive concept. Data from human studies in CDH are
conflicting. In human fetuses with CDH, amniotic fluid
lecithin to sphingomyelin (L/S) ratios and
phosphatidylglycerol (PG) levels have been inconsistent;
some investigators have found normal values and others
document values suggestive of lung immaturity [31-35].
Moreover, surfactant phosphatidylcholine  synthesis and
pool size do not appear to be altered by CDH, although
turnover of phosphatidylcholine is faster in CDH,
possibly due to increased catabolism and/or recycling
[36].  Of the few studies that have examined surfactant
proteins (SP) expression in CDH, data are available only
for SP-A. The concentration of SP-A in tracheal aspirates
of infants with CDH has been shown to be either
unchanged [37] or reduced [38] by CDH.

Evidence

There have been no multicenter randomized trials of
surfactant for respiratory failure due to CDH. In two
retrospective analyses of patients in the CDH Study
Group, surfactant treatment did not improve outcomes

[39], and was associated with increased ECMO use, a
higher incidence of chronic lung disease, and lower
survival [40]. In preterm infants with CDH, the usage of
surfactant was  associated with a lower survival rate [41].

Recent Developments

Janssen, et al. [42] studied endogenous surfactant
metabolism in the most severe CDH patients who
required ECMO. These patients have a decreased
surfactant phosphatidylcholine synthesis that may be part
of the pathogenesis of severe pulmonary insufficiency
and has a negative impact on weaning from ECMO.
Cogo, et al. [43] measured DSPC and SP-B
concentration in tracheal aspirates and their synthesis rate
in infants with CDH compared to infants without lung
disease. Infants with CDH had a lower rate of synthesis of
SP-B and less SP-B in tracheal aspirates. In these infants,
partial SP-B deficiency could contribute to the severity of
respiratory failure and its correction might represent a
therapeutic goal [43].

BRONCHOPULMONARY DYSPLASIA (BPD)

BPD describes the end product of a multitude of injuries
and exposures to the preterm lung occurring prenatally,
perinatally, and postnatally. The etiology of BPD is
multifactorial, and involves derangements in multiple
aspects of lung function (for example, surfactant
production), repair from injury (for example, elastin
deposition), and growth and development (for example,
alveologenesis). These derangements of normal
development are likely mediated, in part, by chronic
inflammation that develops in the immature lung exposed
to repetitive ventilator stretch with oxygen-enriched gas,
often complicated by infection [44]. Surfactant
dysfunction (defined as elevation in the values of
minimum surface tension in vitro) occurs in a high
proportion (43-76%) of preterm infants who remain
intubated and ventilated at 1-2 weeks of age [45-47].
Infants are twice as likely to develop surfactant
dysfunction during episodes of respiratory deterioration
or infection, and higher minimum surface tension is
directly correlated with an index of lung disease severity
[45,46]. In these ventilated preterm infants, elevated
minimum surface tension as measured in tracheal
aspirates was associated with altered lipid composition,
lower total protein in the surfactant fraction, and
markedly lower content of surfactant proteins  B and C.
SP-B content had the strongest correlation with surface
tension and was inversely related [45]. Similar findings
relating SP-B content to surfactant dysfunction have been
described in acute lung injury, thereby supporting the
validity of using SP-B content as an indicator of
surfactant function [48]. Heavy isotope labeling studies
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of intubated infants with BPD have demonstrated altered
surfactant phospholipid pools and reduced recycling of
alveolar surfactant phospholipids [49,50].

Evidence

There is limited data evaluating late surfactant therapy for
premature infants who require continuing ventilatory
support beyond one week of life. Pandit, et al. [51] found
that FiO2 decreased significantly at 24 to 72 h after a
single dose of surfactant to ten premature infants.
Bissinger, et al. [52] also demonstrated a transient
improvement in oxygenation of premature infants >7
days after treatment with two doses of surfactant. Katz
and Klein [53], in a retrospective cohort study of 25
premature infants, found that late surfactant treatment
was well tolerated, and that 70% of those treated had a
short-term improvement in respiratory status. Laughon,
et al. [54] in a multicenter pilot study administered
surfactant  to 136 intubated infants on days 3 to 10 of life,
and reported a trend toward improved survival without
BPD. Merill, et al. [47] in an open label pilot study of 87
very low birthweight infants reported a nonsignificant
increase in the proportion of survivors without BPD when
the number of late doses was increased.

Recent Developments

Keller, et al. [55] conducted a  study to assess the safety
and efficacy of late administration of SP-B containing
surfactant (calfactant) in combination with prolonged
inhaled nitric oxide (iNO) in infants ≤1,000g birth
weight. They randomized 85 preterm infants ventilated at
7-14 d after birth to receive late administration
of surfactant (up to 5 doses) plus prolonged iNO or iNO
alone. Late administration of surfactant had minimal
acute adverse effects. Clinical status as well
as surfactant recovery and SP-B content in tracheal
aspirate were transiently improved as compared to the
controls; these effects waned after 1 day. They concluded
that late therapy with surfactant in combination with iNO
is safe and transiently increases surfactant SP-B content,
possibly leading to improved short- and long-term
respiratory outcomes [55].

An ongoing trial multi-center, blinded, randomized
controlled clinical trial (NCT01022580) aims to evaluate
the effects of booster doses of exogenous surfactant  in
addition to iNO on the outcome of survival without BPD at
post-menstrual age of 36 weeks in extremely low
gestational age  infants.

CONCLUSION

Evidence demonstrating the utility of surfactant
replacement therapry across the varied spectrum of

neonatal respiratory disorders other than RDS exists, but
there still remains a paucity of high-quality RCTs to
recommend  routine incorporation into clinical practice.
Considering the evidence in support of surfactant
replacement therapry as an effective management
strategy in infants with MAS, large multicentric trials
comparing bolus route and lung lavage route should be
conducted. The outcomes should include short- and long-
term clinical outcomes and any adverse effects. In
addition, future studies should focus on carefully
designed RCTs of surfactant replacement therapy in term
or late preterm infants with proven bacterial pneumonia.
In addition, experimental studies exploring the
pharmacokinetics, optimal dose and dosing interval,
concentration, method of delivery and duration of
treatment regimen in each of these conditions are needed
to further optimize neonatal outcomes.
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