Web Table I Grading of Evidence [7] | Grade | Quality of evidence | |-------|--| | A | Well designed and controlled studies; meta-analysis on applicable population; true effect | | | lies close to the estimate of the effect | | В | Studies with minor limitations; consistent findings from multiple observational studies; | | | true effect is likely to be close to estimate of the effect, but there is a possibility that it is | | | substantially different | | С | Single, few or multiple studies with inconsistent findings or major limitations; | | | confidence in the effect estimate is limited, the true effect may be substantially different | | | from estimate of the effect | | D | Expert opinion, case reports; very little confidence in effect estimate, true effect likely to | | | be substantially different from estimate of effect | | X | Situations where validating studies cannot be performed, and benefit or harm clearly | | | predominates | | Level | Strength of recommendation | | 1 | "We recommend": Most patients should receive the recommended course of action | | 2 | "We suggest": Different choices will be appropriate for different patients | Web Table II Gene List for Targeted Panel with Features of Steroid Resistant Nephrotic Syndrome (SRNS) | Gene | Protein | Inherit-
ance | Accession no;
OMIM | OMIM
phenotype | Key clinical features | |-----------------|--|------------------|---------------------------|--|--| | ACTN4 | Actinin, alpha | AD | NM_004924;
603278 | Focal segmental
glomeruloscleros
is (FSGS), type 1 | Familial and sporadic
SRNS (usually adolescent
and adult) | | ADCK4/
COQ8B | Coenzyme
Q8B | AR | NM_024876;
615573 | Nephrotic syndrome, type 9 | FSGS or collapsing
FSGS; one patient
responded to coenzyme
Q10 | | ALG1 | Asparagine-
linked
glycosylation
1 | AR | NM_019109;
605907 | Congenital
disorder of
glycosylation,
type Ik | Neurologic impairment and dysmorphic features | | ANKFY1 | Rabankyrin-5 | AR | NM_001330063.2;
607927 | | Early onset illness | | ANLN | Actin binding protein anillin | AD | NM_018685;
616032 | FSGS, type 8 | FSGS (onset between 9-70 years) | | ARHGAP24 | Rho GTPase-
activating
protein 24 | AD | NM_001025616;
610586 | | FSGS | | ARHGDIA | Rho GDP-
dissociation
inhibitor alpha | AR | NM_001185078;
615244 | Nephrotic syndrome, type 8 | Congenital nephrotic
syndrome; SRNS early
onset; diffuse mesangial
sclerosis on biopsy | | AVIL | Advillin | AR | NM_006576.3;
618594 | Nephrotic
syndrome, type
21 | SRNS; diffuse mesangial sclerosis on biopsy | | CD151 | Tetraspanin
(TM4) | AR | NM_004357;
609057 | Nephropathy;
deafness; SRNS;
epidermolysis
bullosa | Pretibial skin lesions,
sensorineural deafness,
lacrimal duct stenosis,
nail dystrophy,
thalassemia minor | | CD2AP | CD2-
associated
protein | AD/A
R | NM_012120;
607832 | FSGS, type 3 | FSGS | | CLCN5 | H ⁺ /Cl ⁻ exchange transporter 5 | XR | NM_001127898.4;
300009 | Dent disease;
low molecular
weight
proteinuria,
hypercalciuria | Failure to thrive;
hypercalciuria,
nephrolithiasis; low
molecular weight
proteinuria, albuminuria;
FSGS | | COL4A3 | Type IV collagen α3 | AR,
AD | NM_000091;
120070 | Alport syndrome 2, AR; Alport syndrome 3, AD | Alport syndrome; FSGS | | COL4A4 | Type IV collagen α4 | AR | NM_000092;
120131 | Alport syndrome 2, AR | Alport syndrome; FSGS | | COL4A5 | Type IV collagen α5 | XLD | NM_000495;
301050 | Alport syndrome 1, XL | Alport syndrome; FSGS | | COQ2 | Coenzyme Q2 | AR | NM_015697;
609825 | Coenzyme Q10 deficiency, primary, 1 | Mitochondrial disease; isolated SRNS | |---------------|--|----|---------------------------|---|--| | COQ6 | Coenzyme Q6 | AR | NM_182476;
614647 | Coenzyme Q10 deficiency, primary, 6 | Early SRNS;
sensorineural deafness;
ataxia, facial
dysmorphism; FSGS,
diffuse mesangial
sclerosis | | CRB2 | Crumbs cell polarity complex component 2 | AR | NM_173689;
616220 | FSGS, type 9 | SRNS | | CUBN | Cubilin | AR | NM_001081;
261100 | Megaloblastic anemia | Megaloblastic anemia;
proteinuria | | DGKE | Diacylglycerol kinase, epsilon | AR | NM_003647;
615008 | Nephrotic syndrome, type 7 | | | DLC1 | DLC1 Rho
GTPase
activating
protein | | NM_182643.3;
604258 | | Child and adult steroid
sensitive illness and
SRNS; partial CNI
response | | E2F3 | E2F
transcription
factor 3 | | NM_001949.4;
600427 | | FSGS, mental retardation; also with partial deletion of chromosome 6 | | EMP2 | Epithelial membrane protein 2 | AR | NM_001424;
615861 | Nephrotic syndrome, type 10 | Childhood SRNS; steroid sensitive illness also reported | | FAT1 | FAT tumor
suppressor
homolog 1 | AR | NM_005245.4;
600976 | | SRNS, tubular ectasia,
hematuria | | FN1 | Fibronectin | AD | NM_212482.3;
601894 | Glomerulopathy with fibronectin deposits 2 | Proteinuria, hematuria;
glomerulomegaly,
fibronectin positive
subendothelial, mesangial
deposits | | <i>GAPVD1</i> | GTPase-
activating
protein, VPS9-
domain protein
1 | | NM_001282680.3;
611714 | | Early-onset SRNS | | INF2 | Inverted formin 2 | AD | NM_022489;
613237 | FSGS, type 5 | Isolated SRNS; Charcot-
Marie-Tooth neuropathy
with FSGS | | ITGA3 | Integrin α3 | AR | NM_002204;
605025 | Interstitial lung
disease;
epidermolysis
bullosa | Congenital, SRNS;
interstitial lung disease;
epidermolysis bullosa
(congenital) | | ITGB4 | Integrin β4 | AR | NM_000213;
147557 | Epidermolysis
bullosa; pyloric
atresia | Epidermolysis bullosa
(junctional); pyloric
atresia; FSGS | | ITSN1 | Intersectin-1 | AR | NM_003024.3;
602442 | | Congenital, SRNS;
steroid sensitive illness
reported | | ITSN2 | Intersectin-2 | AR | NM_019595.4; | | Steroid sensitive illness | | | | | 604464 | | (minimal change) or
membranoproliferative
glomerulonephritis | |---------|--|-----------|-------------------------|---|---| | KANK1 | KN motif
ankyrin repeat
domain-
containing
protein 1 | AR | NM_015158.3;
607704 | | Steroid sensitive illness | | KANK2 | KN motif
ankyrin repeat
domain-
containing
protein 2 | AR | NM_015493;
617783 | | Steroid sensitive illness;
steroid dependence;
hematuria | | KANK4 | KN motif
ankyrin repeat
domain-
containing
protein 4 | AR | NM_0181712.4;
614612 | | SRNS; hematuria | | KIRREL1 | Kin of IRRE-
like protein 1 | AR | NM_018240.7;
607428 | | SRNS | | LAGE3 | EKC/KEOPS
complex
subunit
LAGE3 | XR | NM_006014.4;
301006 | Galloway-Mowat
syndrome 2 | Early-onset SRNS; FSGS;
microcephaly, gyral
abnormalities; delayed
development | | LAMB2 | Laminin, beta- | AR | NM_002292;
614199 | Nephrotic
syndrome, type
5; ocular
anomalies | Pierson syndrome; SRNS, microcoria, neurodevelopmental delay | | LCAT | Phosphatidylc
holine-sterol
acyltransferase | AR | NM_000229.2;
245900 | Norum disease | Proteinuria, renal failure,
anemia, corneal lipid
deposits | | LMNA | Prelamin-A/C | AD | NM_170707;
151660 | Lipodystrophy type 2, partial | Familial partial lipodystrophy; FSGS | | LMX1B | LIM homeobox transcription factor 1β | AD | NM_002316;
602575 | Nail-patella
syndrome | FSGS; SRNS, mild
ridging to hypoplasia of
nails, absent, hypoplastic
patella; glaucoma | | MEFV | Pyrin | AD/A
R | NM_000243.2;
608107 | Familial
Mediterranean
fever | Fever, pericarditis,
pleuritis, arthralgia;
nephrotic syndrome | | MAFB | Transcription factor MafB | AD | NM_005461.5;
166300 | Multicentric
carpotarsal
osteolysis
syndrome | Proteinuria, end stage
kidney disease; skeletal
disorders; mental
retardation; minor facial
anomalies | | MAGI2 | Membrane-
associated
guanylate
kinase inverted
2 | AR | NM_012301.4;
617609 | Nephrotic
syndrome, type
15 | SRNS; FSGS | | MYO1E | Myosin IE | AR | NM_004998;
614131 | FSGS, type 6 | FSGS; collapsing FSGS | | МҮН9 | Myosin-9 | AD | NM_002473;
155100 | Macrothrombocy tes, granulocyte | MYH9-related disease;
Epstein, Fechtner | | | | | | inclusions;
nephritis,
deafness | syndromes: nephritis,
deafness,
thrombocytopenia, giant
platelets | |--------|---|----|--------------------------------|---|--| | NEUI | Sialidase-1 | AR | NM_000434.4;
256550 | Sialidosis, type
I/II | SRNS; FSGS;
hepatomegaly, corneal
clouding, cherry red spots
(nephrosialidosis) | | NPHS1 | Nephrin | AR | NM_004646;
256300 | Nephrotic syndrome, type 1 | Congenital, SRNS | | NPHS2 | Podocin | AR | NM_014625;
600995 | Nephrotic syndrome, type 2 | Congenital, SRNS | | NUP85 | Nucleoporin,
85-kDa | AR | NM_024844.5;
618176 | Nephrotic
syndrome, type
17 | SRNS; FSGS | | NUP93 | Nucleoporin,
93-kDa | AR | NM_014669;
616892 | Nephrotic
syndrome, type
12 | SRNS; FSGS | | NUP107 | Nucleoporin,
107-kDa | AR | NM_020401;
616730 | Nephrotic
syndrome, type
11
Galloway-Mowat
syndrome-7 | SRNS | | NUP133 | Nucleoporin,
133-kDa | AR | NM_018230.3;
618177; 618349 | Nephrotic
syndrome, type
18
Galloway-Mowat
syndrome-8 | Isolated FSGS | | NUP160 | Nucleoporin,
160-kDa | AR | NM_015231.2;
618178 | Nephrotic
syndrome, type
19 | SRNS | | NUP205 | Nucleoporin,
205-kDa | AR | NM_015135;
616893 | Nephrotic syndrome, type 13 | Early onset SRNS | | NXF5 | Nuclear RNA export factor 5 | XR | NM_032946;
300319 | | FSGS co-segregating with heart block | | OCRL | Inositol polyphosphate 5-phosphatase | XR | NM_000276;
309000 | Lowe syndrome | FSGS; absence of proximal tubular dysfunction reported | | OSGEP | Probable
tRNA N6-
adenosine
threonylcarba
moyltransferas
e | AR | NM_017807.4;
617729 | Galloway-Mowat
syndrome 3 | SRNS | | PAX2 | Paired box protein 2 | AD | NM_003987;
616002 | FSGS, type 7 | FSGS without extrarenal manifestations | | PDSS2 | Decaprenyl
diphosphate
synthase
subunit 2 | AR | NM_020381;
610564 | Leigh syndrome | Mitochondrial disorder;
proteinuria | | PLCe1 | Phospholipase C, epsilon-1 | AR | NM_016341;
610725 | Nephrotic syndrome, type 3 | Congenital, SRNS | | PMM2 | Phosphomann omutase 2 | AR | NM_000303;
212065 | Disorder of glycosylation, type Ia | Psychomotor retardation,
peripheral neuropathy
with SRNS | |----------|---|----|---------------------------|---------------------------------------|---| | PODXL | Podocalyxin | AD | NM_005397;
602632 | | FSGS | | PTPRO | Protein-
tyrosine
phosphatase,
receptor-type
O | AR | NM_030667;
614196 | Nephrotic syndrome, type 6 | SRNS | | SCARB2 | Lysosome
membrane
protein 2 | AR | NM_005506;
254900 | Myoclonic epilepsy, 4; renal failure | Progressive myoclonic epilepsy; SRNS; FSGS | | SGPL1 | Sphingosine-
1-phosphate
lyase 1 | AR | NM_003901.4;
617575 | Nephrotic
syndrome, type
14 | Primary adrenal
insufficiency, neurologic
abnormalities; SRNS | | SMARCALI | SMARCAL1 | AR | NM_014140;
242900 | Schimke
immunoosseous
dysplasia | Spondyloepiphyseal
dysplasia; immune
deficiency, neurological
features; FSGS | | SYNPO | Synaptopodin | AD | NM_007286;
608155 | | Sporadic FSGS (promoter mutations) | | SYNPO2 | Synaptopodin-
2 | AR | Not available | | Congenital childhood onset, SRNS | | TBC1D8B | TBC1 domain family, 8B | XR | NM_017752.3;
301028 | Nephrotic
syndrome, type
20 | Early-onset SRNS with FSGS | | TNS2 | Tensin 2 | AR | NM_170754.3;
607717 | | Steroid dependence
(minimal change, FSGS,
diffuse mesangial
sclerosis) | | TP53RK | EKC/KEOPS
complex
subunit
TP53RK | AR | NM_033550.4;
617730 | Galloway-Mowat
syndrome 4 | Early onset SRNS | | TPRKB | EKC/KEOPS
complex
subunit
TPRKB | AR | NM_001330389.1;
617731 | Galloway-Mowat
syndrome 5 | Early-onset SRNS | | TRPC6 | Transient
receptor
potential
channel,
subfamily C
member 6 | AD | NM_004621;
603965 | FSGS, type 2 | Familial and sporadic SRNS (chiefly adult) | | TTC21B | Tetratricopepti
de repeat
protein 21B | AR | NM_024753;
613820 | Nephronophthisi
s 12 | Late onset FSGS;
tubulointerstitial fibrosis
and tubular atrophy;
Joubert syndrome | | WDR4 | tRNA
(guanine-N7-)
methyltransfer
ase subunit
WDR4 | AR | NM_001260475.1;
618347 | Galloway-Mowat
syndrome 6 | Early-onset SRNS | | WDR73 | WD repeat
domain 73 | AR | NM_032856;
616144 | Galloway-Mowat syndrome 1 | SRNS | |----------|--------------------------------------|----|----------------------|--|--| | WT1 | WT1
transcription
factor | AD | NM_024426;
256370 | Nephrotic syndrome, type 4 | Isolated SRNS; Frasier & Denys-Drash syndromes | | XPO5 | Exportin 5 | AR | NM_020750;
607845 | | Childhood SRNS | | ZMPSTE24 | CAAX prenyl
protease 1
homolog | AR | NM_005857;
608612 | Mandibuloacral
dysplasia, type B
lipodystrophy | FSGS; skeletal anomalies,
dysplastic nails; skin
pigmentation; calcified
skin nodules | | APOL1 | Apolipoprotei
n L-I | | NM_003661;
612551 | FSGS, type 4 | G1, G2 risk alleles:
Susceptibility to FSGS;
end stage kidney disease
in African, Hispanic
Americans | OMIM Online Mendelian Inheritance in Man; AR autosomal recessive; AD autosomal dominant; CNI calcineurin inhibitors; XR X-linked recessive, XL X linked Phenocopy genes (OMIM no.; phenotype): NPHP4 (606966; nephronophthisis 4); CLCN5 (300009; Dent disease 1); CTNS (219800; cystinosis); DGKE (615008; hemolytic uremic syndrome); NPHP13 (614377; nephronophthisis 13); GLA (301500; Fabry disease); FN1 (601894; glomerulopathy with fibronectin deposits 2); PAX2 (120330; papillorenal syndrome); COL4A3 (104200; Alport syndrome); COL4A4 (203780; Alport syndrome); COL4A5 (301050; Alport syndrome); AGXT (259900; primary hyperoxaluria type 1); FAT4 (612411; Van Maldergem syndrome 2); WDR19 (614377; nephronophthisis 13). Web Table III Corticosteroid Response and Kidney Failure in Children with Genetic and Non-Genetic Forms of Steroid-Resistant Nephrotic Syndrome | Author, yr [Ref] | Genetic cause, | Complete, partial remission | | Kidney Failure [^] | | |-------------------------|-----------------------------------|-----------------------------|-------------------|-----------------------------|---------------------| | | %* | Non-genetic, N | Genetic, N | Non-genetic,
N | Genetic, N | | Trautmann, 2018 [28] | 373/1554 (24%) | 159/387 | 10/74 | 113/501 ^{^1} | 116/241^1 | | Landini, 2020 [29] | 37/64 (57.8%) ^{\$1} | 13/17 | 1/19\$2 | 3/6^2 | 11/25^2 | | Nagano, 2020 [30] | 69/230 (30%) | 41/158 | 2/37 | 79/158 ^{^3} | 52/69 ^{^3} | | Mason, 2020 [18] | 81/271 (29.9%) | 69/149 | 9/26 | 41/149^4 | 16/26 ^{^4} | | Total [#] | 1086/3902
(27.8%) [#] | 282/711
(39.7%) | 22/156
(14.1%) | 236/814
(29.0%) | 195/361
(61.5%) | | Genetic versus non-gene | Odds ratio | 95% confidence interval | | P | | | Non-response | 4.00 | 2.52, 6.51 | | < 0.0001 | | | Kidney failure | 2.87 | 2.22, 3.72 | | < 0.0001 | | Only includes reports based on next-generation sequencing; latest or largest report for units with multiple papers ^{*}Congenital nephrotic syndrome not excluded, except by Trautmann et al [#]Includes 526 of 1783 families tested by Sadowski et al [26] $^{^{\}hat{}}$ Numbers at 1 last follow up; 2 at 10-yr; or extrapolated from Kaplan Meier analysis, at 3 last follow up or at 4 10-yr ^{\$1} Includes and \$2 excludes 18 patients with phenocopies # Web Table IV Important Drug Interactions of Cyclosporine and Tacrolimus | Medication | Effect | Management | |---|---|--| | Drugs that decrease levels | - | | | Anticonvulsants: Phenytoin, carbamazepine, phenobarbitone Antibiotics: Rifampin; caspofungin (only with tacrolimus) | Enzyme induction leads
to lower levels; risk of
non-response or relapse | Increase medication by 30%; monitor trough levels following change of dose or discontinuation of anticonvulsant Monitor trough levels following addition, change of dose or discontinuation of medication | | Drugs that increase levels | | | | Erythromycin, clarithromycin Fluconazole, ketoconazole, voricanazole Diltiazem, verapamil | Enzyme inhibition results in high levels and risk of nephrotoxicity | Monitor trough levels following addition, change of dose or discontinuation of medication Monitor serum creatinine, electrolytes, liver function tests | | Pharmacodynamic interactions | | | | Aminoglycosides,
amphotericin B, nonsteroidal
anti-inflammatory drugs | Risk of nephrotoxicity | Avoid if alternative options are available
Monitor creatinine and electrolytes
frequently | | HMG-CoA reductase inhibitors | Myalgia, rhabdomyolysis | Start with low dose of statins; monitor for toxicity | | Nifedipine, amlodipine, phenytoin (only with cyclosporine) | Higher incidence and severity of gingival hyperplasia | Avoid long-term combined use; change to alternative agent Dental and oral hygiene; regular dentist visits | ### Web Box I Management of Allograft Recurrence of Nephrotic Syndrome Monitor proteinuria by urine protein to creatinine (Up/Uc) ratio Daily for 1 week; weekly for 4-weeks; monthly for 1-yr; then every 3-6 months Renal biopsy, especially if low grade proteinuria or graft dysfunction #### Treatment of Recurrence Plasma exchange Membrane filtration or centrifugation based; heparin or citrate anticoagulation Replacement fluid: 5% albumin; fresh frozen plasma Schedule: Plasma exchange 1.5 times plasma volume (60-75 mL/kg) per session on alternate days for 2-weeks; single volume (40 mL/kg) once per week for 4-6 weeks Medications IV methylprednisolone 250 mg/m²/day for 3 days; taper to previous dose of oral prednisolone Increase dose of calcineurin inhibitors: Tacrolimus trough 8-12 ng/mL; cyclosporine trough 150-200 ng/mL Rituximab 375 mg/m² two doses, one-week apart Add angiotensin converting enzyme inhibitor once allograft function established with stable estimated GFR Consider therapy with oral cyclophosphamide for 3 months in place of mycophenolate mofetil Recurrence: Urine protein to creatinine ratio $(Up/Uc) \ge 1$ mg/mg if anuric before transplant; or increase in Up/Uc by ≥ 1 mg/mg if proteinuria at time of transplant ### Web Box II Evaluation of Patients with Congenital Nephrotic Syndrome Extra-renal features: Dysmorphic features, eye, urogenital abnormalities; large placenta Urinalysis; urine protein to creatinine ratio Complete blood counts Blood creatinine, protein, albumin, electrolytes, calcium, phosphate Transaminases, alkaline phosphatase, 25-hydroxyvitamin D Lipid profile, free thyroxine, thyroid stimulating hormone Renal ultrasonography Kidney biopsy: Not necessary, except if a genetic diagnosis is not established *Identifying the cause* Exome sequencing (Web Table II) Serology for intrauterine infections (TORCH), syphilis, hepatitis B and C, HIV Karyotyping (infants with ambiguous genitalia, extra-renal features)