А

Emergence of Resistance in Community-acquired Enteric Fever

We present a retrospective analysis of 225 blood culture-proven pediatric patients with the sensitivity pattern represented in the Antibiogram obtained by Vitek-2 Systems. Resistance to typhoid fever with commonly used oral antibiotics (Ciprofloxacin 41.4%, Amoxy-clavulonic acid 44.1% and Cotrimoxazole 32.7%) was common.

Keywords: Antibiotic, Treatment, Salmonella typhi, Typhoid fever.

Enteric fever is a systemic infection caused by *Salmonella enterica*, including *S. enterica* serotype Typhi (*S. typhi*) and serotype Paratyphi (*S. paratyphi*). Gold standard for diagnosing typhoid is bacterial isolation of the organism in blood cultures [1]. We present antibiotic sensitivity/ resistance pattern of salmonella isolates over a 30-month period.

Blood was drawn from 315 children (age 1-15 years) suspected to be having typhoid fever. It was inoculated immediately in PF bottles which showed positivity between 5-9 hours [2]. This blood was further streaked upon enriched media (XLDAgar) and (DCAgar). As the colonies appeared, species identification and Antibiogram was done by Vitek 2 systems [3].

Out of 315 children with suspected typhoid fever who underwent blood culture and sensitivity, 225 tested positive for Salmonella. **Table I** present the distribution and antibiotic sensitivity pattern of Salmonella isolates. As 129 isolates of *S. typhi* revealed sensitivity towards Ciprofloxacin, we retested these isolates with Nalidixic acid and found that 17 strains were resistant to it. The only isolate of *Salmonella paratyphoid A* was resistant to Ampicillin, quinolones, cefotaxime and gentamicin, and one out of five *Salmonella paratyphoid B* strain was extended-spectrum beta-lactamase producer, exhibiting multidrug resistance.

Widespread use of fluoroquinolones has resulted in emergence of *S. typhi* strains with reduced susceptibility and nalidixic acid-resistance. High frequency of nalidixic acid resistance, and multidrug resistance has also been documented earlier [4]. Prescribing antibiotics based on culture and sensitivity of the organism may restrain the further spread of drug resistance in pediatric population [4].

	S. typhi (N=220)	S. para typhi B (N=5)
mpicillin	131 (59.5)	3 (60)
iperacillin-Tazobactum	125 (33.9) 220 (100.0)	2 (40) 5 (100)

TABLE I SENSITIVITY PATTERN OF S. TYPHI AND S. PARATYPHI B

Amoxy-Clavulonic acid	123 (55.9)	2 (40)
Piperacillin-Tazobactum	220 (100.0)	5 (100)
Cefuroxime	135 (61.4)	4 (80)
Cefotaxime	64 (29.1)	0(0)
Cefixime	102 (46.4)	2 (40)
Ceftriaxone	164 (74.5)	3 (60)
Cefoperazone-Sulbactum	220 (100.0)	5 (100)
Ceftazidime	205 (93.2)	4 (80)
Cefepime-Tazobactum	130 (59.1)	3 (60)
Ofloxacin	133 (60.5)	4 (80)
Ciprofloxacin	129 (58.6)	4 (80)
Levofloxacin	184 (83.6)	4 (80)
Moxifloxacin	144 (65.5)	2 (40)
Gentamicin	116 (52.7)	2 (40)
Tobramycin	198 (90.0)	5 (100)
Amikacin	164 (74.5)	5 (100)
Nitrofurantoin	137 (62.3)	5 (100)
Cotrimoxazole	148 (67.3)	4 (80)
Meropenem	204 (92.7)	5 (100)
Azithromycin	120 (54.5)	3 (60)
Chloramphenicol	205 (93.2)	3 (60)

Values in No.(%) of strains sensitive.

Contributors: Both authors participated in data collection, manuscript writing, and its final approval.

Funding: None; Competing interests: None stated.

UPMA NARAIN AND *RITU GUPTA

Tejas Micro diagnostic; and *Neonatal and Pediatric Unit, Priti Medical Research and Charitable Trust; Allahabad, India. *docritugupta@gmail.com

ť

References

- Nagshetty K, Channapa ST, Gaddad SM. Antimicrobial susceptibility of Samonella typhi in India. J Infect Dev Ctries. 2010;4:70-3.
- REF 259794 BacT/ALERT PF-bioMerieux. Available from:http://microsite.biomerieux-usa.com/bact/resources/ package-inserts/PF.pdf. Accessed September 12, 2014.
- Funke G, Monnet D, deBernardis C, Graevenitz AV, Freney J. Evalution of the VITEK 2 system for rapid identification of medically relevant gram-negative rods. J Clin Microbiol. 1998;36:7.
- 4. Madhulika U, Harish BN, Parija SC. Current pattern in antimicrobial susceptibility of Salmonella typhi isolates in Pondicherry. Indian J Med Res. 2004;120:111-4.