phamide (750 mg/m²/dose) was administered for 3 doses. Following the first dose, baby achieved sustained eye contact and neck-control within a week. By one month, he could recognize parents, sit with support, creep and vocalize; mild oro-motor dyskinesia and bilateral hand athetosis persisted. Symptoms completely resolved after the second cyclophosphamide dose. Steroids were tapered off over 3 months after initial pulse dose. At the time of last follow-up, extrapyramidal movements were well controlled and baby was regaining age-appropriate milestones.

To the best of our knowledge, this is the first case of anti-NMDAR-E associated with SARS-CoV-2 in an infant aged <12 months. Anti-NMDAR-E, characterized by severe movement with encephalopathy, can be triggered by viral infections or tumors. Herpes simplex virus (HSV) encephalitis is the most commonly associated viral trigger, and can result in anti-NMDAR-E 4-6 weeks, or longer after an acute encephalitis episode [1].

SARS-CoV-2 is known to result in strong immune activation, which is broadly termed as MIS-C [2]. Post-SARS-CoV-2 immune-mediated manifestations can present within two weeks to a median of 25-45 days after an acute infection [3]. Anti-NMDAR-E associated with SARS-CoV-2 has been reported in only three children aged 23 months [4], 7 years [5] and 14 years [6]. All three children had a positive SARS-CoV-2 RT-PCR with evolution to encephalitis from acute infection in two children, and no clinical infection in one child. In our case, only IgG antibodies were positive, indicating a prior infection, which on history may be correlated with the preceding URTI. Considering the high population seropositivity, a true cause-effect relation cannot be ascertained. A positive RT-PCR test during the acute URTI episode and a positive family history would have strengthened the causal association. Molecular mimicry probably best explains the pathogenesis for SARS-CoV-2 associated anti-NMDAR-E. Whether it can result in late-onset CNS encephalitis, similar to HSV encephalitis, remains to be elucidated. The present report, in conjunction with previous reports, supports the association of SARS-CoV-2 with NMDARE. Future research focusing on association between SARS-CoV-2 and early autoimmunity can help understand the underlying pathogenesis.

Prabhjot Kaur,1 Vinay MV,2 Babu S Madarkar3
1Pediatric Neurology, 2Pediatric Hematology-Oncology, and 3Neumatology, Department of Pediatrics, Rainbow Children’s Hospital, Bengaluru, Karnataka.
babumadarkar@yahoo.co.in

REFERENCES

ERRATA

In Table I, which shows baseline characteristics of the study participants, mean (SD) lactate value in the control group should be ‘4.6 (2.9) mmol/L’ in place of ‘66.3 (10.4) mmol/L.’ in the same table, mean (SD) ScvO2 in the intervention group should be ‘66.3(10.4)%’ in place of ‘4.6 (2.9)%.’

Appropriate corrections have been done in the web version at https://www.indianpediatrics.net/dec2021/1124.pdf

Please note following corrections in the article titled “Low-dose (0.05 unit/kg/hour) vs standard-dose (0.1 unit/kg/hour) insulin in the management of pediatric diabetic ketoacidosis: A randomized double-blind controlled trial” published in Indian Pediatr. 2021;58:617-23.

On page 620, column II, first para, second sentence should be “The hypokalemia was more in malnourished children in the standard-dose group (P=0.31), and more children in the standard-dose group required a higher concentration of dextrose and tapering of insulin infusion at least once to counter the falling blood glucose (Table II).” in place of “The hypokalemia was more in malnourished children in the standard-dose group (P=0.31), and more children in the standard-dose group required a higher concentration of dextrose and tapering of insulin infusion at least once to counter the falling blood glucose P=0.005.)”

Appropriate corrections have been done in the web version at https://www.indianpediatrics.net/july2021/617.pdf