TABLE I CLINICAL AND LABORATORY CHARACTERISTICS IN NEONATES WITH HYPERNATREMIC DEHYDRATION (N=49)

Parameter	Exclusively breastfed $(n=16)$	Exclusively top fed $(n=17)$	Mixed fed (n=16)
*Acute kidney injury	11 (68.7%)	14 (82.3%)	8 (50%)
Serum Sodium (meq/L)	150 (148-159)	164.5 (145-165)	158 (149-163)
Serum Potassium (meq/L)	5.3 (4-6)	4.9 (4-5.9)	6.9 (5-7.1)
Serum Creatinine	2.5 (2-4.2)	4.1 (2-5.1)	3.1 (2.5-5.2)
Correction time for Hypernatremia (h)	30 (20-40)	42 (24-56)	30 (24-42)
Duration of hospitalization (d)	6 (4.75-8)	7 (4.5-8.75)	6.5 (4.1-8)
*Neonates with signs of dehydration	1 (6.25%)	2 (12.5%)	3 (17.6%)

All values in median(IQR) except *No.%

can be managed at level II neonatal intensive care unit [10].

Contributors: MJ: Concept and design, analysis of data and manuscript drafting; SN: Collected the data and helped in data analysis, drafted the manuscript; AS: collected and analyzed the data, reviewed the literature, drafted the manuscript. Funding: None; Competing interest: None stated.

SMITA NAIR, AMITABH SINGH AND MAMTA JAJOO*

Department of Pediatrics, Chacha Nehru Bal Chikitsalaya, New Delhi, India. *mamtajajoo123@gmail.com

REFERENCES

- Moritz ML, Ayus JC. Preventing neurological complications from dysnatremias in children. Pediatr Nephrol. 2005;20:1687-700.
- 2. Moritz ML, Ayus JC. The changing pattern of hypernatremia in hospitalized children. Pediatrics. 1999;104:435-9.
- 3. Maayan-Metzger A, Mazkereth R, Kuint J. Fever in healthy asymptomatic newborns during the first days of life. Arch Dis Child Fetal Neonatal Ed. 2003;88:F312-4.
- 4. Oddie S, Richmond S, Coulthard M. Hypernatraemic

- dehydration and breast feeding: A population study. Arch Dis Child. 2001;85:318-20.
- Uras N, Karadag A, Dogan G, Tonbul A, Tatli MM. Moderate hypernatremic dehydration in newborn infants: retrospective evaluation of 64 cases. J Matern Fetal Neonatal Med. 2007;20:449-52.
- Manganaro R, Mamì C, Marrone T, Marseglia L, Gemelli M. Incidence of dehydration and hypernatremia in exclusively breast-fed infants. J Pediatr. 2001;139:673-5.
- 7. Erdemir A, Kahramaner Z, Cosar H, Turkoglu E, Kanik A, Sutcuoglu S, *et al.* Comparison of oral and intravenous fluid therapy in newborns with hypernatremic dehydration. J Matern Fetal Neonatal Med. 2014;27:491-4.
- 8. Moritz ML, Manole MD, Bogen DL, Ayus JC. Breastfeeding-associated hypernatremia: are we missing the diagnosis? Pediatrics. 2005;116:e343-7.
- 9. Bolat F, Oflaz MB, Güven AS, Özdemir G, Alaygut D, Doðan MT, *et al.* What is the safe approach for neonatal hypernatremic dehydration? A retrospective study from a neonatal intensive care unit. Pediatr Emerg Care. 2013;29:808-13.
- Alshayeb HM, Showkat A, Babar F, Mangold T, Wall BM. Severe hypernatremia correction rate and mortality in hospitalized patients. Am J Med Sci. 2011;341:356-60.

Content Analysis of Commercially Available Probiotics

We carried out content analysis of four batches each of 3 commercially available probiotic formulations of *Bacillus clausii*. Species identification was done using MALDI-TOF-MS technique while bacterial count was done using plate colony count. Only one of the three probiotic formulation analyzed was found to have homogeneous population of *B. clausii* while none was found to have the exact viable bacterial count as suggested on the label.

Keywords: Bacillus clausii, Probiotics, Reliability, Supplements.

Published online: February 09, 2018. PII:S097475591600118.

orld Health Organization (WHO) defines probiotics as "live microorganisms that, when administered in adequate amounts, confer a health benefit on the host" [1]. The pharmaceutical market is flooded with numerous probiotic products with very few effective checks-and-balances to regulate their quality. We intended to culture probiotic products said to contain *Bacillus clausii*, and determine the probiotic species and their count and compare it with the product label.

The study was carried out between September 2016 to January 2017. After hospital's ethical committee approval, we tested a total of 12 samples (4 each – 4 different batches) of 3 popular probiotics containing *B. clausii* namely – Product 1 (Enterogermina – Expiry range: 05/18 – 08/18),

Parameter	Product 1	Product 2	Product 3
Species on label	Bacillus clausii	Bacillus clausii	Bacillus clausii
Isolated species	Bacillus clausii	Bacillus subtilis	Bacillus subtilis
Label count	2×10^{9}	2×10^{9}	2×10^{9}
Isolated species count			
Batch 1	1×10^9	4×10^6	5×10^9
Batch 2	2.5×10^{8}	2.5×10^{6}	2×10^8
Batch 3	1×10^9	1.6×10^{6}	7×10^8
Batch 4	2×10^{9}	3.4×10^{6}	1.3×10^{8}

TABLE I CONTENT ANALYSIS OF THREE COMMERCIALLY AVAILABLE PROBIOTIC PREPARATIONS CONTAINING BACILLUS CLAUSII

Product 2 (Tufpro – Expiry range: 01/18 – 08/18) and Product 3 (Darolac Aqua – Expiry range: 12/17 – 09/18). The expiry date of products as mentioned by manufacturer was two years for all three products. MALDI-TOF-MS identification method (Matrix Assisted Laser Desorption Ionization Method Time of Flight– Mass Spectrometry) was used to identify bacterial species. Plate count method was used and colonies were counted as Colony Forming Units (CFU)/sample using Miles and Mishra method [2,3].

Only Product 1 was found to contain a homogenous population of *Bacillus clausii*, whereas Product 2 and Product 3 showed growth of *Bacillus subtilis* species in the samples. None of the samples had uniform viable bacterial counts across all samples as mentioned on the labels (*Table* I).

Our results are in agreement with some of the previously done studies. In a study by Elliot, *et al.* [4], only three out of nine tested probiotic supplements from South Africa were found to be containing the same bacteria as mentioned on the label [4], while studies by Berman, *et al.* [5] and Temmerman, *et al.* [6] found only 1/20 and 6/55 of the different probiotic supplements tested to be consistent with the product label, respectively. Patrone, *et al.* [7] analyzed five probiotics containing only *Bacillus clausii*, and found that bacterial species and counts varied among the samples.

MALDI-TOF-MS technique used by us is a costeffective method, which determines species as well as strains with fair amount of accuracy [8-10]. The main advantage of colony counting method is that it can be used to count large number of organisms, and also that it counts only viable organisms. The limitation of our study is the small sample size with limited number of products analyzed.

Future research needs to focus on analyzing more probiotic products both from the pharmaceutical as well as the dairy industry and tested at various time points of their viability, including tests close to their expiry dates. Funding: None; Competing interest: None stated.

PANKAJ YADAV¹, PANKAJ SHARMA² AND ROHIT ARORA¹

Departments of ¹Neonatology and ²Microbiology, Apollo Cradle, Gurgaon, Haryana, India. ¹drpankajyadav05@gmail.com

REFERENCES

- Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506-14.
- Miles AA, Mishra SS, Irvin JO. The estimation of bactericidal power of the blood. J Hyg (Lond). 1938;38:732-49.
- 3. Hedges AJ. Estimating the precision of serial dilutions and viable bacterial counts. Int J Food Microbiol. 2002;76:207-14
- 4. Elliot E, Teversham K. An evaluation of nine probiotics available in South Africa. S Afr Med J. 2004;94:121-4.
- Berman S, Spicer D. Safety and reliability of lactobacillus supplements in seattle, Washington (a pilot study). International J Alternative Med. 2003;1:2.
- Temmerman R, Pot B, Huys G, Swings J. Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int J Food Microbiol. 2003;81:1-10.
- Patrone V, Molinari P, Morelli L. Microbiological and molecular characterization of commercially available probiotics containing *Bacillus clausii* from India and Pakistan. Int J Food Microbiol. 2016;237:92-7.
- Won SY, Kyeong ML, Kyu JH. Taxonomic identification of bacillus species using matrix-assisted laser desorption ionization time of flight mass spectrometry. Ann Clin Microbiol. 2016;19:110-20.
- Bizzini A, Durussel C, Bille J, Greub J, Prod'hom G. Performance of matrix-assisted laser desorption ionization time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol. 2010:48:1549-54.
- Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, et al. Ongoing revolution in bacteriology: Routine identification of bacteria by matrix-assisted laser desorption ionization time of flight mass spectrometry. Clin Infect Dis. 2009;49:543-51.