Burden of Rotavirus Diarrhea in Under-five Indian Children

ASHOK KUMAR, SRIPARNA BASU, *VIPIN VASHISHTHA AND *†PANNA CHOUDHURY

From the Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India and *Indian Academy of Pediatrics, Kailash Darshan, Kennedy Bridge, Mumbai, India.[†]Deceased. Correspondence to: Professor Ashok Kumar, Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University,

Varanasi 221 005, India. ashokkumar_bhu@hotmail.com

Need and purpose: Rotavirus is the most common cause of severe diarrhea in infants and young children worldwide. The burden of rotavirus diarrhea in Indian children is not well established. The present study reviewed the epidemiology of rotavirus diarrhea in hospitalized children and in the community, molecular serotyping and under-five mortality caused by rotavirus diarrhea. **Methods:** Publications, reporting rotavirus diarrhea in Indian children, were retrieved through a systematic search of databases including Medline, PubMed, IndMed, websites of WHO, UNICEF, National Family Health Survey, Ministry of Health and Family Welfare, and Government of India. 'Human' studies in 'English' language were included. Age group selected was 0 month to 5 years. No restrictions were applied in terms of study design and time frame. **Conclusions:** Stool sample positivity varied from 4.6% in Kolkata to 89.8% in Manipur, among hospitalized children, and from 4% in Delhi to 33.7% in Manipur in community. Most cases of rotavirus diarrhea in India are caused by G1, G2, and G untypeable strains with distinct regional variations. Rotavirus was identified as an etiological agent in 5.2 to 80.5% cases of nosocomial diarrhea. Data are lacking for rotavirus mortality.

Keywords: Burden, Community, Epidemiology, Gastroenteritis, Incidence, Prevalence, Systematic review.

otavirus is the most common cause of severe diarrhea in infants and young children worldwide. It is estimated to be responsible for 611,000 annual childhood deaths globally [1], and another 2 million hospitalizations every year [2]. More than 80% of these deaths occur in low-income countries [1-3]. It is estimated that India spends approximately Rs. 2.0-3.4 billion (US\$ 41-72 million) [4] annually for the treatment of rotavirus diarrhea in children <5 years of age.

Rotaviruses are double stranded RNA viruses within the family Reoviridae. The primary mode of transmission is via the fecal-oral route with symptoms typically developing after an incubation period of one to two days. Majority of children become infected with rotavirus within the first three years of life, with a peak incidence of rotavirus diarrhea between 6 to 24 months [5]. Previous infection offers protection from subsequent illnesses. However, re-infections are frequent but subsequent illnesses tend to be less severe [6].

Laboratory procedures for diagnosis of rotavirus include electron microscopy (EM), passive latex agglutination assays (LA), electropherotyping using polyacylamide gel electrophoresis (PAGE), enzymelinked immunosorbent assays (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR) [7]. ELISA is the method of choice for routine screening. For genotyping, newer methods like multiplex RT-PCR based genotyping, hybridization assays and nucleotide sequencing are used. Rotaviruses are classified into seven different groups (A-G), of which groups A, B and C are known to infect humans. Severe, life-threatening disease in children worldwide is caused predominantly by group A rotaviruses. Rotavirus strains are further subtyped based on the proteins of the outer capsid eliciting neutralizing antibodies, VP7 (G serotypes) and VP4 (P serotypes). Till date, at least 15 G genotypes and 25 P genotypes have been identified [8].

Considering the high burden of the disease, there is a need to summarize and critically evaluate all available information related to rotavirus diarrhea in India. The present review was done to estimate the burden of rotavirus diarrhea in under-five Indian children in the community and hospital settings.

METHODS

The primary research question was 'epidemiology of rotavirus diarrhea in under-five children of India' which was further subcategorized into (*i*) epidemiology of rotavirus diarrhea in hospitalized children from different parts of India; (*ii*) epidemiology of rotavirus diarrhea in community from different parts of India; (*iii*) demographic profile of rotavirus diarrhea (*iv*) identification of molecular epidemiology of rotavirus diarrhea; and (*vi*) mortality from rotavirus diarrhea.

The primary databases searched were Medline through PubMed (*www.pubmed.com*) and IndMed (*http:// indmed.nic.in/*). Other sources included online reports from the websites of World Health Organization (WHO) (*www.who.int*), documents of the UNICEF (*www.unicef.org/india/*), National Family Health Survey (*http://www.nfhsindia.org/*), and documents of the Ministry of Health and Family Welfare, Government of India (*www.mohfw.nic.in*). The related articles and the reference lists of included publications were also searched to identify additional studies.

All types of publications available in scientific public domain and reporting on rotavirus infection in India were included. No particular time frame was set. Our search was limited to 'humans', children (0 month to 5 years) and articles published in 'English' language. For searching PubMed, we followed a standard search methodology [9]. A search string was devised by converting each research question into problem, intervention, comparison, outcome (PICO) format. MeSH headings were looked for the research theme in question and added to the PubMed search builder. Salient keywords were included during search. A search for MeSH headings for 'rotavirus', revealed 'rotavirus, infections', which was relevant and yielded 31 subheadings from which we selected 'rotavirus diarrhea', 'rotavirus gastroenteritis', and 'rotavirus disease'. For assessing the epidemiology of rotavirus diarrhea in India, we searched PubMed using the search string: "(epidemiology* OR burden OR morbidity OR mortality or incidence OR prevalence OR profile) AND (rotavirus OR rotavirus diarrhea OR rotavirus gastroenteritis OR rotavirus disease) AND India. For the subcategories, an additional search was made by combining keywords/MeSH terms using the search string "(*) AND (rotavirus, infections) AND India", where the asterisk represented the MeSH term/keywords for the subcategories. To search IndMed, the search string was kept simple using search keywords. The search date, search terms, search string and search output were recorded and saved. In the next step, we scrutinized all titles and excluded the titles which were not relevant; the remaining articles were studied further. The next step involved examination of the abstract or the introduction (where the abstract was not published) of the short-listed titles; the ones which were not found relevant were excluded and the remaining articles were processed further. In the next step examination of full-text articles was done. Related articles and cross-references in identified articles were also reviewed and similar steps were performed before short listing the cross-references.

RESULTS

Initial search in PubMed (initially accessed on 19th

August 2013 and updated on 1st March 2014) using 'rotavirus' yielded 4173 articles. While searching, filters activated were: Humans, English, Newborn: 0-1 month, Infant: 1-23 months, Preschool Child: 2-5 years. Search with 'rotavirus diarrhea' yielded 2241 articles and search with 'rotavirus gastroenteritis' yielded 2013 articles. Details of search strings and yield of articles have been summarized in *Web Table* **I**.

Burden of Rotavirus Diarrhea in Hospitalized Children

A total of 54 studies [8,10-62], carried out using samples obtained from under-five Indian children hospitalized with rotavirus diarrhea were included (*Table* I). There was large variability in sample size ranging from 39 [33] to 3064 [31]. Maximum number of studies (19) was carried in Northern India. The range of stool positivity for rotavirus was widely distributed, varying from 4.6% in Kolkata [38] to 89.8% in Manipur [35]. Most of the studies used ELISA/PAGE for the screening of rotavirus although latex agglutination assay, immunoblot and electron microscopy were also used in a limited number of studies.

Kelkar, *et al.* [33] investigated an epidemic of diarrhea in Jawhar, a tribal area of Thane district, Maharashtra. Within a period of approximately 2 months, 490 cases of acute diarrhea were reported among children under-five years of age, with a case fatality rate of 0.40%. Twentyseven out of 39 (69.2%) rectal swabs/fecal specimens obtained from hospitalized children up to 2 years of age were positive by ELISA for rotavirus.

Burden of Rotavirus Diarrhea in the Community

A total of 16 studies [3,10,54,63-75], carried out using samples obtained from under-five Indian children in community with rotavirus diarrhea were included (*Table* **II**). Stool sample positivity varied from 4% in Delhi [64] to 33.7% in Manipur [73].

Demographic profile of Rotavirus Diarrhea

Demographic profile of rotavirus diarrhea has been summarized in **Table III**. A total of 27 studies [10,11,13,18,24,31,33-37,44,47,48,50-55,61,64-70] could be identified which described signs and symptoms of rotavirus diarrhea both in hospitalized children and in children from the community. Rotavirus infection is most common below 2 years of age, 7-12 months being the most commonly affected age group. Maximum infection occurs in winter months, from October-February.

Rotavirus Serotypes

A total of 50 studies [3,19,22,23,25-30,32,40,41,44-48,76-95] could be identified which dealt with serotyping

INDIAN PEDIATRICS

Reference	Place of study	Study period (year)	Age group (year)	Detection method	Stool samples collected	Positive, n(%)
Northern India						
Samantaray, et al.[10]	Delhi	1980-1981	<5	ELISA	99	32 (32.3)
Broor, et al.[11]	Chandigarh	1982-1983	<5	ELISA	242	44 (18.2)
Singh, et al.[12]	Chandigarh	1982 - 1985	<5	ELISA	694	111 (15.9)
Ram, et al.[13]	Chandigarh	1984-1987	<3	ELISA	1024	120 (11.72)
Aggarwal, et al [14]	Delhi	1985	<5	ELISA	256	19(7.4)
Chakravarthi, et al.[15]	Delhi	1987 - 1989	<5	ELISA	978	176 (18.0)
Chakravarti, et al.[16]	Delhi	1987 - 1988	<5	ELISA	288	44 (15.3)
Broor, et al.[17]	Delhi	1988 - 1990	<5	ELISA	990	104 (10.5)
Patwari, et al.[18]	Delhi	1989 - 1990	<3	Immunodot	400	23 (6.0)
Chatterjee, et al.[8]	Delhi	1990	<5	ELISA	157	71 (45.0)
Husain, et al.[19]	Delhi	1990 - 1991	<5	ELISA/PAGE	450	60 (13.3)
Sharma, et al.[20]	Northern India	Not mentioned	Not mentioned	ELISA	172	32 (19.0)
Chakravarti, et al.[21]	Delhi	1998 - 2000	<5	ELISA/PAGE	1172	158 (13.5)
Chakravarti, et al.[22]	Delhi	1998 - 2000	<3	ELISA/PAGE	560	100 (17.8)
Bahl, et al.[23]	Delhi	2000 - 2001	<5	ELISA	584	137 (23.5)
Nag, et al.[24]	Lucknow	2003-2004	<2	ELISA/PAGE	90	14(15.6)
Chakravarti, et al.[25]	Delhi	2005 - 2007	<2	ELISA	862	318(36.9)
Mishra, et al.[26]	Lucknow	2004 - 2008	<3	ELISA	412	79 (19.2)
Gazal, et al. [27]	Jammu & Kashmir	Not mentioned	<5	PAGE	210	88 (41.9)
Western India						
Desai, et al.[28]	Mumbai	1984 - 1986	Not mentioned	LA/EM/ELISA	273	63 (21.0)
Kelkar, et al. [29]	Pune	1990 - 1993	Not mentioned	ELISA	722	188 (26.0)
Kelkar, et al. [30]	Pune	1992 - 1996	<5	ELISA	945	266 (28.2)
Kelkar, et al.[31]	Pune	1990-1997	<5	ELISA	3064	432 (14.1)
Kelkar, et al.[32]	Pune	1993-1996	<5	ELISA	628	177 (28.3)
Kelkar, et al. [33]	Thane	2000-2001	<5	ELISA	39	27 (69.2)
Borade, et al.[34]	Pune	2009-2010 (?)	<5	ELISA	246	88 (35.8)
Eastern India						
Sengupta, et al.[35]	Manipur	1979	Not mentioned	ELISA	59	53 (89.8)
Saha, et al.[36]	Kolkata	1979-1981	<12	ELISA	245	55 (22.4)
Sen, et al.[37]	Kolkata	1979-1981	Not mentioned	ELISA	356	27 (7.6)
Ghosh, et al.[38]	Kolkata	1986-1988	<6 months	ELISA	218	10 (4.6)
Phukan, et al.[39]	Dibrugarh	1999 - 2000	<5	ELISA	202	47 (23.3)
Samajdar, et al. [40]	Kolkata & Berhampur	2003-2005	<4	ELISA	545	198 (36.3)
Samajdar, et al.[41]	Kolkata	2005 - 2006	<4	ELISA	668	249 (37.3)
Nair, et al.[42]	Kolkata	2007-2009	<5	Not mentioned	648	312 (48.1)
Mukherjee, et al.[43]	Manipur	2005 - 2008	<5	ELISA	489	244 (49.9)
Southern India						
Paniker, et al.[44]	Calicut	1976-1978	<5	EM	3355	368 (70.7)
Mathew, et al. [45]	Kerala	Not mentioned	<5	ELISA	1827	648 (35.9)
						Contd

TABLE I ROTAVIRUS POSITIVITY IN CHILDREN HOSPITALIZED WITH DIARRHEA FROM DIFFERENT PARTS OF INDIA

INDIAN PEDIATRICS

VOLUME 53—JULY 15, 2016

Reference	Place of study	Study period (year)	Age group (year)	Detection method	Stool samples collected	Positive, n(%)
Aijaz, et al.[46]	Bangalore	1988 - 1994	Not mentioned	PAGE	694	150 (21.6)
Aijaz, <i>et al</i> .[46]	Mysore	1993 - 1994	Not mentioned	PAGE	447	50 (11.2)
Ananthan, et al.[47]	Chennai	1997 - 1999	0-2,>2	ELISA	245	51 (20.8)
Saravanan, et al. [48]	Chennai	1995 - 1999	<3	ELISA/PAGE	745	168 (22.6)
Anand, et al.[49]	Hyderabad	1998 - 1999	<2	PAGE	352	57 (16.2)
Shetty, et al.[50]	Karnataka	Not mentioned	<5	LA	106	19 (18)
Ballal, et al.[51]	Karnataka	1995-2000	<5	LA	780	40 (19.9)
Anand, et al.[52]	Tirupati	1991	<2	ELISA	170	40 (23.5)
Kang, et al.[53]	Vellore	1995 - 1998	<5	ELISA/LA	602	126 (20.9)
Banerjee, et al.[54]	Vellore	2002 - 2004	<5	ELISA/ LA	343	94 (27.1)
Sowmyanarayanan, et al. [55]	Vellore	2005-2008	<5	EIA/PCR	1001	354 (35.4)
Multiple locations						
Ramachandran, et al.[56]	Multiple 1	1993	6 mo to < 5 yr	ELISA	458	63 (13.7)
Jain, et al.[57]	Multiple 2	1996 - 1998	<5	ELISA	1502	313 (20.8)
Kang, et al.[58]	Multiple 3	1998 - 1999	<5	LA/EM/ELISA	365	82 (22.5)
Das, et al.[59]	Multiple 4 ^a	1998 - 2000	<4	PAGE	406	141 (34.7)
Das, et al.[60]	Multiple 5	2001	<4/all ^b	PAGE	454	161 (35.4)
Kang, et al.[61]	Multiple 6	2005 - 2007	<5	RT-PCR	4243	1405 (39.2)
Kang, et al.[62]	Multiple 7	2005 - 2009	<5	RT-PCR	7285	2899 (40)

Contd. from pre-page

LA, latex agglutination; EM, electron microscopy; PAGE, polyacrylamide gel electrophoresis; ELISA, enzyme linked immunosorbent assay; Multiple 1: Shimla, Lucknow, Bhopal, Nagpur, Davengere; Multiple 2: Shimla, Lucknow, Bhopal, Nagpur, Davengere, Delhi, Hyderabad; Multiple 3: Vellore, Mysore, Jalandhar, Yamunagar; Multiple 4: Kolkata, Imphal, ^aData on disease burden from Kolkata only; Multiple 5: Kolkata, Dibrugarh, Bhuvaneshwar, Chandigarh; ^b<4/all: Samples collected from two groups: children <4 yr, patients of all age groups.

of rotavirus, of which G and P typing were done in 44 studies. Details of studies have been summarized in *Web Tables* II, III and IV.

Overall, G1 was the most common serotype isolated in Indian studies, followed by G2 and G-untypeable. On regional distribution, in Northern India, G1 was the most common serotype isolated, followed by G2, G-untypeable and G9. In Western India, G2 was predominant, closely followed by G-untypeable and G1. In Eastern India, G1 was commonest followed by G2. In Southern India, G1 was predominant, followed by G2 and G-untypeable. In P serotyping, P[4] was most prevalent all over India, followed by P[6] and P Untypeable/others. In Northern India, P[6] was most common, followed by P[4].

In the study of Kelkar, *et al.* [95], about 10% of stool specimen showed multireactivity in enzyme immunoassay with monoclonal antibodies specific for serotypes G1-4, 6, 8, and 10. The isolates were more close to G6 RF strain, which is a bovine rotavirus and is the first report of isolation of bovine serotype, G6 from India. Tran, *et al.* [96]

provided evidence for the formation of the G3P[4] strain through genetic reassortment in which a G2P[4] strain with a typical DS-1 genogroup background acquired the VP7 gene from a co-circulating G3 human rotavirus strain.

Nosocomial Rotavirus Infections

Five studies were identified which dealt with nosocomial rotavirus infection, one in Delhi [97], two studies in Kolkata [98,99], and two in Vellore [100,101]. Details of the studies have been discussed in *Table IV*. Stool positivity for Rotavirus varied from 5.2% in Vellore [101] to 80.5% in Kolkata [98].

Rotavirus Diarrhea in Neonates

In hospitalized neonates, the prevalence of neonatal infection varies from 22-73% in India [102-106], though the infection remains asymptomatic in 69-95% [102,105-107]. Viral excretion begins as early as 2 days of age, peaking around 3-6 days and resolves by 2 weeks. The chance of acquiring an infection is inversely proportional to the length of hospital stay [102,105,107]. In two

Reference	Place of study (Community	Study period A	.ge (y)	Detection method	Diarrhea	ı Sample size(n)	Positive, n (%)
Northern India								
Samantaray, et al [10]	Delhi	Semi urban	1980-1981	<5	ELISA	Yes No	212 82	45 (21.2) 2 (2.4)
Panigrahi, <i>et al</i> [66]	Northern India	Urban/rural	1982 - 1983	<5	ELISA	Yes No	105 350	44 (29.3) 43 (12.3)
Malik, <i>et al</i> [67]	Aligarh	Semi urban	1982-1983	<5	ELISA	Yes No	216 216	40 (18.5) 1 (0.05)
Bhan, <i>et al</i> [63]	Delhi	Semi urban	1985-1986	<5	ELISA	Yes No	204 98	42 (20.6) 2 (2.0)
Raj, <i>et al</i> [64]	Delhi	Semi urban	1985-1986	<3	ELISA	Yes No	346 211	14 (4.0) 14 (6.6)
Bhan, <i>et al</i> [65]	Delhi	Urban/rural	1985	<5	ELISA	Urban		6(1.9)
						Yes No Rural	330 319	50 (15.2) 6 (1.9)
						Yes No	340 315	56 (16.5) 9 (2.9)
Yachha, <i>et al</i> [68]	Chandigarh	Urban/ peri-urban/ rural	1988 - 1991	<5	ELISA	Yes	218	25 (11.5) rural-14 periurban-7; urban -4
Nath, et al [69]	Varanasi	Urban	1988 - 1989	<5	LA	Yes No	376 299	67 (17.7) 12 (4)
Nath, et al [70]	Varanasi	Urban	1988 - 1989	<5	LA	Yes	607	100 (16.4)
Western India								
Desai, <i>et al</i> [71]	Mumbai	Urban	1984-1986	<5	EM/LA /ELISA	Yes No	273 273	63 (23) 3 (1.1)
Kelkar, et al [72]	Pune		1993 - 1996	<5	ELISA	Yes	489	76 (15.5)
Eastern India								
Krishnan, et al [73]	Manipur	Urban/Semi urban	1989-1992	<5	ELISA	Yes No	787 457	265 (33.7) 22 (4.8)
Southern India								
Maiya, <i>et al</i> [74]	Vellore*	Urban	1974-1975	<2	EM	Yes No	50 30	13 (26) 0 (0)
Mathew, et al [75]	Vellore	Urban, periurban, rural	1983-1985	<3	EM	Yes No	916 587	95 (10.4) 5 (0.9)
Banerjee, et al [54]	Vellore	Urban	2002 - 2004	<5	ELISA	Yes	1152	82 (7.1)
Gladstone, et al.[3]	Vellore	Urban	2002 - 2004	<5	ELISA/ PCR	Yes	1103	535 (48.5)

*Both hospital and community; NK, not known; EM, electron microscopy; LA, latex agglutination; ELISA, enzyme linked immunosorbent assay.

reports, neonatal infections are found to confer protection against future rotavirus diarrhea. Bhan, *et al.* [105] reported 46% fewer episodes of rotavirus diarrhea and 22% fewer episodes of all-cause diarrhea in the first year of life following neonatal rotavirus infections, whereas Vethanayagam, *et al.* [104] documented 37% less chance of infection after neonatal rotavirus diarrhea. However, a larger study from Vellore [106] did not find any association between neonatal infection and subsequent rotavirus diarrhea.

Reference	Study location	Place of study	Peak age incidence (%)	Gender affected	Peak season
Samantaray, et al.[10]	Delhi	Hospital	0-6 mo	M:F=26:19	October - June
Broor, et al.[11]	Chandigarh	Hospital	7-12 mo	Not mentioned	Not mentioned
Ram, et al.[13]	Chandigarh	Hospital	10-12 mo	M:F=3:1	November
Patwari, et al.[18]	Delhi	Hospital	7-12 mo	M:F=256:144	February-April
Yachha, <i>et al</i> . [68]	Chandigarh	Community	6-11 mo	Not mentioned	November-February
Panigrahi, et al. [66]	North India	Community	37-60 mo	Not mentioned	April-June
Malik, <i>et al.</i> [67]	Aligarh	Community	<1 yr	M=F	January-March
Bhan, et al .[65]	Delhi	Community	0-6 mo	Not mentioned	Not mentioned
Raj, et al. [64]	Delhi	Community	13-24 mo	Not mentioned	October - December
Nag, et al.[24]	Lucknow	Hospital	6-12 mo	M:F=2.5:1	Not mentioned
Nath, et al .[69]	Varanasi	Community	<2 yr	F>M	November - February
Kelkar, et al.[31]	Pune	Hospital	6-12 mo (64.7)	M>F	Winter
Borade, et al.[34]	Pune	Hospital	11-20 mo	M=F	December - January
Kelkar, et al.[33]	Thane	Hospital	6-12 mo	M>F	Not mentioned
Saha, et al.[36]	Kolkata	Hospital	6-12 mo	M=F	January
Sen, et al.[37]	Kolkata	Hospital	<2 yr (25)	Not mentioned	Not mentioned
Sengupta, et al.[35]	Manipur	Hospital	Not mentioned	M:F=1.9:1	November
Ananthan, et al.[47]	Chennai	Hospital	7-12 mo (28.7)	Not mentioned	Not mentioned
Saravanan, et al. [48]	Chennai	Hospital	7-12 mo (62.5)	M:F=93:75	Sept-Feb
Shetty, et al.[50]	Karnataka	Hospital	<2 yr-59(56)	Not mentioned	Winter (Dec-Feb)
Ballal, et al.[51]	Karnataka	Hospital	7-12 (65)	Not mentioned	Not mentioned
Anand, et al. [52]	Tirupati	Hospital	7-12 mo	M>F	Not mentioned
Kang, et al.[53]	Vellore	Hospital	Mean age 19.5 mo	Not mentioned	Not mentioned
Banerjee, et al. [54]	Vellore	Hospital	Not mentioned	Not mentioned	December-January
Sowmyanarayanan, <i>et al.</i> [55]	Vellore	Hospital	6-12 mo	M:F=75:51	January-February
Paniker, et al. [44]	Calicut	Hospital	6-23 mo	M=F	November - January
Kang, <i>et al</i> .[61]	Multiple locations	Hospital	Mean age 12.9±9.0mo	M>F	Not mentioned

TABLE III DEMOGRAPHIC PROFILE OF ROTAVIRUS DIARRHEA

Strains responsible for neonatal infections included G9P[11], G10P[11], and G12P[6] in most studies [102-104,108,109]. Some of these strains were found to have genetic homology with non-human rotavirus, suggesting a role of human and animal reassortant viruses in neonatal infections [40,102,104,108].

Rotavirus Mortality

As per current global estimate, worldwide, each year, rotavirus related diarrhea results in 453 000 deaths (95% CI 420 000,494 000) in children younger than 5 years, accounting for 37% of diarrhea-related deaths and 5% of all deaths in this age group. The greatest proportion of these deaths is estimated to be contributed by India (98621, 22%) [110]. Child Health Epidemiology

Reference Group of WHO and UNICEF documented an overall decline in the mortality of under-five children by only 14%, from 527,000 in 2004 to 453,000 in 2008 [111,112].

DISCUSSION

In this review, we have examined the epidemiology of rotavirus diarrhea in under-five children of India both in hospitalized children and in children from the community. Overall, stool positivity for rotavirus was higher in hospitalized children than in community. Highest percentage of stool positivity was reported from North-Eastern India, both in hospital and community setting. This shows greater geographical burden of rotavirus diarrhea in this part of India.

Reference	Placeof study	Study period (year)	Age group (years)	No. of hospitalized children (n)	Nosocomial diarrhea (n)	Rotavirus positive, n (%)
Uppal, <i>et al</i> . [97]	Delhi	Not mentioned	Children	75	30	5 (16.7)
Dutta, et al. [98]	Kolkata	1985 - 1986	<12	189	36	29 (80.5)
Dutta, et al. [99]	Kolkata	1987	<5	3138	320	15 (8.4)
Desikan, et al.[100]	Vellore	1990 - 1991	<3	194	39	13 (6.7)
Kamalaratnam, et al.[101]	Vellore	1990 - 1991	<3	214	41	13 (5.2)

TABLE IV NOSOCOMIAL ROTAVIRUS INFECTIONS

In the present review, the average incidence of stool positivity for rotavirus in hospitalized children with diarrhea is found to be higher than previous ones. Earlier, Jain, et al [89] reviewed the epidemiology of rotavirus in India from 30 studies conducted between 1976 and 1997 from a total patient population of 12,164 children. Rotavirus was detected in 15-23% of patients hospitalized for severe diarrhea. In a later report, the proportion of diarrhea hospitalizations attributable to rotavirus appeared to have increased between 2000 and 2004, from 22% (range 17%-28%) to 39% (range 29%-45%) [113]. In the review of Ramani, et al. [114], a total of 29 studies carried out using samples obtained from 22 Indian cities in hospitalized children with diarrhea. A total of 15,476 samples were tested. Rates of rotavirus positivity ranged from 6-45%. The possible reasons could be either true increase in the incidence of rotavirus diarrhea compared to other etiological agents or an increase in the awareness of parents seeking early hospitalization. It can also be secondary to better diagnostic facilities in health care set ups. The authors explained this phenomenon by a relatively slower rate of decrease in hospitalizations for rotavirus compared with other causes of severe childhood diarrhea.

Two studies from Delhi reported 0-6 months as the most common age group [13,63]. On the other hand, Panigrahi, *et al.* [66], from Northern India reported a higher age group of 37-60 months. Some studies in India have found no association between rotavirus infection and time of year [8,18], though most have observed an increase in rotavirus-associated diarrhea during the winter months, October to February. Jain, *et al.* [89] found that rotavirus was most prevalent (31%) in children between the ages of 1 to 2 years (20%), and children <7 months of age (13%).

G1 was the most commonly isolated serotype in Indian studies, followed by G2 and G-untypeable. On regional distribution, in northern India, G1 was the most common serotype isolated, followed by G2, G-untypeable and G9. In Western India, G2 was predominant, closely followed by G-untypeable and G1. In Eastern India, G1 was detected most commonly, followed by G2. In Southern India, G1 was predominant, followed by G2 and Guntypeable. Children infected with G1 strains had a greater risk of developing more-severe cases of diarrhea than did children infected with other rotavirus strains [23].

In P serotyping, P[6] was most common in northern India, followed by P[4]. In western and eastern India, prevalence of P[4] was higher than other P serotypes. In southern India, untypeable P type was most commonly documented, closely followed by P[8]. P[4] was documented in lesser number of children. Several studies have also reported different G-P combinations [19,21,26,40,78]. Presence of nontypeable strains also posed a significant diagnostic challenge [29]. Emergence of G9 and G12 as important strains of rotavirus has been reported by several authors [40,43,57,59].

Very few studies examined the impact of rotavirus diarrhea in under-five mortality in India. Most of the data of rotavirus mortality are not direct; only estimated figures have been projected. World Health Organization estimates that globally 453000 (420 000 - 494 000) child deaths occurred during 2008 due to rotavirus infection [115].

The major limitation of this review was that we did not evaluate the quality of included studies, and a fomal metaanalysis was not carried out. Moreover, studies had marked heterogencity in terms of selection of patients/ samples, method of diagnosis for rotavirus positivity, and molecular characterization. Moreover, some other studies may have been published since the last date of search of this review.

In conclusion, rotavirus diarrhea is a significant health problem in under-five children of India both in hospital and community setting. The prevalence of infection is not uniform, varying widely from region-to-region and stateto-state. Most of the studies are confined to few places, and sample size differed widely in individual studies. Different methodologies are employed for virus detection in different studies. Moreover, there is lack of data from many geographical locations, especially Central India, where the burden of diarrheal disease is particularly heavy. *Contributors:* AK, SB: conceptualized the review and formulated the search methodology; AK, SB: jointly searched the literature; SB: drafted the initial manuscript; AK, SB, VMV, PC: helped in preparation of draft, gave critical inputs and approved the final manuscript; AK: will act as the guarantor of the review.

Funding: Indian Academy of Pediatrics; *Competing interests*: None stated.

REFERENCES

- 1. Taneja DK, Malik A. Burden of rotavirus in India—Is rotavirus vaccine an answer to it? Indian J Public Health. 2012;56:17-21.
- 2. Simpson E, Wittet S, Bonilla J, Gamazina K, Cooley L, Winkler JL. Use of formative research in developing a knowledge translation approach to rotavirus vaccine introduction in developing countries. BMC Public Health. 2007;7:281.
- 3. Gladstone BP, Ramani S, Mukhopadhya I, Muliyil J, Sarkar R, Rehman AM, *et al.* Protective effect of natural rotavirus infection in an Indian birth cohort. N Engl J Med. 2011;365:337-46.
- 4. Tate JE, Chitambar S, Esposito DH, Sarkar R, Gladstone B, Ramani S, *et al.* Disease and economic burden of rotavirus diarrhoea in India. Vaccine. 2009;27:F18-24.
- 5. Linhares AC, Velázquez FR, Pérez-Schael I, Sáez-Llorens X, Abate H, Espinoza F, *et al.* Human Rotavirus Vaccine Study Group. Efficacy and safety of an oral live attenuated human rotavirus vaccine against rotavirus gastroenteritis during the first 2 years of life in Latin American infants: a randomised, double-blind, placebo-controlled phase III study. Lancet. 2008;371:1181-9.
- Velazquez FR, Matson DO, Calva JJ, Guerrero ML, Morrow AL, Campbell SC, *et al.* Rotavirus infection in infants as protection against subsequent infections. N Engl J Med. 1996;335:1022-8.
- 7. Chatterjee B, Husain M, Kavita, Seth P, Broor S. Diversity of rotavirus strains infecting pediatric patients in New Delhi, India. J Trop Pediatr. 1996;42:207-10.
- Greenberg HB, Flores J, Kalica AR, Wyatt RG, Jones R. Gene coding assignments for growth restriction, neutralization and subgroup specificities of the W and DS-1 strains of human rotavirus. J Gen Virol. 1983;64:313-20.
- 9. Haidich AB. Meta-analysis in medical research. Hippokratia. 2010;14:29-37.
- Samantaray JC, Mohapatra LN, Bhan MK, Arora NK, Deb M, Ghai OP, *et al.* Study of rotavirus diarrhea in a north Indian community. Indian Pediatr. 1982;19:761-5.
- 11. Broor S, Singh V, Venkateshwarlu, Gautam S, Mehta S, Mehta SK. Rotavirus diarrhoea in children in Chandigarh, India J Diarrhoeal Dis Res. 1985;3:158-61.
- Singh V, Broor S, Mehta S, Mehta SK. Molecular epidemiology of human rotavirus infections in Chandigarh (India). Indian J Med Res. 1990;91:9-14.
- Ram S, Khurana S, Khurana SB, Sharma S, Vadehra DV, Broor S. Bioecological factors *and* rotavirus diarrhoea. Indian J Med Res. 1990;91:167-70.
- 14. Aggarwal P, Singh M, Guha DK. Prevalence of bacterial pathogens and rotavirus in hospitalised children with acute

diarrhoea in Delhi, India. J Diarrhoeal Dis Res. 1988; 6:37-8.

- 15. Chakravarthi A, Broor S, Natarajan R. Epidemiological and clinical characteristics of acute diarrhea in children due to human rotavirus. J Trop Pediatr. 1992;38:192-3.
- Chakravarti A, Kumar S, Mittal SK, Broor S. Clinical and epidemiological features of acute gastroenteritis caused by human rotavirus subgroups. J Diarrhoeal Dis Res. 1992;10:21-4.
- Broor S, Husain M, Chatterjee B, Chakraborty A, Seth P. Temporal variation in the distribution of rotavirus electropherotypes in Delhi, India. J Diarrhoeal Dis Res. 1993;11:14-8.
- Patwari AK, Srinivasan A, Diwan N, Aneja S, Anand VK, Peshin S. Rotavirus as an aetiological organism in acute watery diarrhoea in Delhi children: Reappraisal of clinical and epidemiological characteristics. J Trop Pediatr. 1994;40:214-8.
- Husain M, Seth P, Dar L, Broor S. Classification of rotavirus into G and P types with specimens from children with acute diarrhea in New Delhi, India. J Clin Microbiol. 1996;34:1592-4.
- Sharma P, Sehgal R, Ganguly NK, Vaidyanathan U, Walia BNS. Serogroups of rotavirus in north India. J Trop Pediatr. 1994;40:58-9.
- Chakravarti A, Rawat D, Chakravarti A. Molecular epidemiology of rotavirus in Delhi. Indian J Pathol Microbiol. 2004;47:90-3.
- 22. Chakravarti A, Kumaria R, Chakravarti A. Prevalence of genotypes G1-G4 of human rotavirus in a hospital setting in New Delhi. Indian J Gastroenterol. 2005;24:127-8.
- 23. Bahl R, Ray P, Subodh S, Shambharkar P, Saxena M, Parashar U, *et al.* Delhi Rotavirus Study Group. Incidence of severe rotavirus diarrhea in New Delhi, India, and G and P types of the infecting rotavirus strains. J Infect Dis. 2005;192:S114-9.
- 24. Nag VL, Khare V, Awasthi S, Agrawal SK. Clinical profile and prevalence of rotavirus infection in children presented with acute diarrhea at tertiary care referral hospital at northern part of India. J Commun Dis. 2009;41:183-8.
- 25. Chakravarti A, Chauhan MS, Sharma A, Verma V. Distribution of human rotavirus G and P genotypes in a hospital setting from Northern India. Southeast Asian J Trop Med Public Health. 2010;41:1145-52.
- 26. Mishra V, Awasthi S, Nag VL, Tandon R. Genomic diversity of group A rotavirus strains in patients aged 1-36 months admitted for acute watery diarrhoea in northern India: A hospital-based study. Clin Microbiol Infect. 2010;16:45-50.
- Gazal S, Taku A, Bhat MA, Badroo G. Group A rotavirus and bacterial agents associated with diarrhoea-induced hospitalisations in children below 5 years of age in Jammu. Indian J Med Microbiol. 2014;32:57-59.
- Desai HS, Banker DD. Rotavirus infection among children in Bombay. Indian J Med Sci. 1993;47:27-33.
- Kelkar SD. Prevalence of human group A rotavirus serotypes in Pune, India (1990-1993). Indian J Med Res. 1997;106:508-12.
- 30. Kelkar SD, Purohit SG, Simha KV. Prevalence of rotavirus

INDIAN PEDIATRICS

VOLUME 53–JULY 15, 2016

diarrhoea among hospitalized children in Pune, India. Indian J Med Res. 1999;109:131-5.

- Kelkar SD, Ayachit VL. Circulation of group A rotavirus subgroups and serotypes in Pune, India, 1990-1997. J Health Popul Nutr. 2000;18:163-70.
- 32. Kelkar SD, Purohit SG, Boralkar AN, Verma SP. Prevalence of rotavirus diarrhea among outpatients and hospitalized patients: a comparison. Southeast Asian J Trop Med Public Health. 2001;32:494-9.
- Kelkar SD, Ray PG, Shinde DN. An epidemic of rotavirus diarrhoea in Jawhar Taluk, Thane district, Maharashtra, India, December 2000-January 2001. Epidemiol Infect. 2004;132:337-41.
- Borade A, Bais AS, Bapat V, Dhongade R. Characteristics of rotavirus gastroenteritis in hospitalized children in Pune. Indian J Med Sci. 2010;64:210-8.
- Sengupta PG, Sen D, Saha MR, Niyogi S, Deb BC, Pal SC, et al. An epidemic of rotavirus diarrhoea in Manipur, India.Trans R Soc Trop Med Hyg. 1981;75:521-3.
- 36. Saha MR, Sen D, Datta P, Datta D, Pal SC. Role of rotavirus as the cause of acute paediatric diarrhoea in Calcutta. Trans R Soc Trop Med Hyg. 1984;78:818-20.
- 37. Sen D, Saha MR, Niyogi SK, Nair GB, De SP, Datta P, et al. Aetiological studies on hospital in-patients with acute diarrhoea in Calcutta. Trans R Soc Trop Med Hyg. 1983;77:212-4.
- 38. Ghosh AR, Nair GB, Dutta P, Pal SC, Sen D. Acute diarrhoeal diseases in infants aged below six months in hospital in Calcutta, India: an aetiological study. Trans R Soc Trop Med Hyg. 1991;85:796-8.
- Phukan AC, Patgiri DK, Mahanta J. Rotavirus associated acute diarrhoea in hospitalized children in Dibrugarh, northeast India. Indian J Pathol Microbiol. 2003;46:274-8.
- 40. Samajdar S, Varghese V, Barman P, Ghosh S, Mitra U, Dutta P, *et al.* Changing pattern of human group A rotaviruses: emergence of G12 as an important pathogen among children in eastern India. J Clin Virol. 2006;36: 183-8.
- 41. Samajdar S, Ghosh S, Chawla-Sarkar M, Mitra U, Dutta P, Kobayashi N, *et al.* Increase in prevalence of human group A rotavirus G9 strains as an important VP7 genotype among children in eastern India. J Clin Virol. 2008;43: 334-9.
- 42. Nair GB, Ramamurthy T, Bhattacharya MK, Krishnan T, Ganguly S, Saha DR, *et al.* Emerging trends in the etiology of enteric pathogens as evidenced from an active surveillance of hospitalized diarrhoeal patients in Kolkata, India. Gut Pathog. 2010;2:4.
- 43. Mukherjee A, Chattopadhyay S, Bagchi P, Dutta D, Singh NB, Arora R, *et al.* Surveillance and molecular characterization of rotavirus strains circulating in Manipur, north-eastern India: increasing prevalence of emerging G12 strains. Infect Genet Evol. 2010;10:311-20.
- 44. Paniker CK, Mathew S, Mathan M. Rotavirus and acute diarrhoeal disease in children in a southern Indian coastal town.Bull World Health Organ. 1982;60:123-7.
- Mathew MA, Paulose A, Chitralekha S, Nair MK, Kang G, Kilgore P. Prevalence of RotavirusDiarrhea among Hospitalized Under-five Children. Indian Pediatr.

2014;51:27-31.

- 46. Aijaz S, Gowda K, Jagannath HV, Reddy RR, Maiya PP, Ward RL, *et al.* Epidemiology of symptomatic human rotaviruses in Bangalore and Mysore, India, from 1988 to 1994 as determined by electropherotype, subgroup and serotype analysis. Arch Virol. 1996;141:715-26.
- 47. Ananthan S, Saravanan P. Genomic diversity of group A rotavirus RNA from children with acute diarrhoea in Chennai, south India. Indian J Med Res. 2000;111: 50-6.
- Saravanan P, Ananthan S, Ananthasubramanium M. Rotavirus infection among infants and young children in Chennai, South India. Indian J Med Microbiol. 2004;22:212-21.
- 49. Anand T, Raju TA, Rao MV, Rao LV, Sharma G. Symptomatic human rotavirus subgroups, serotypes *and* electropherotypes in Hyderabad, India. Indian J Med Res. 2000;112:1-4.
- Shetty M, Brown TA, Kotian M, Shivananda PG. Viral diarrhoea in a rural coastal region of Karnataka India. J Trop Pediatr. 1995;41:301-3.
- Ballal M, Shivananda PG. Rotavirus and enteric pathogens in infantile diarrhoea in Manipal, South India. Indian J Pediatr. 2002;69:393-6.
- Anand T, Lakshmi N, Kumar AG. Rotavirus diarrhea among infants and children at Tirupati. Indian Pediatr. 1994;31:46-8.
- Kang G, Green J, Gallimore CI, Brown DWG. Molecular epidemiology of rotaviral infection in South Indian children with acute diarrhoea from 1995-1996 to 1998-1999. J Med Virol. 2002;67:101-5.
- 54. Banerjee I, Ramani S, Primrose B, Moses P, Iturriza-Gomara M, Gray J, *et al.* Comparative study of rotavirus epidemiology in children from a community based birth cohort and a tertiary hospital in south India. J Clin Microbiol. 2006;44:2468-74.
- 55. Sowmyanarayanan TV, Ramani S, Sarkar R, Arumugam R, Warier JP, Moses PD, *et al.* Severity of rotavirus gastroenteritis in Indian children requiring hospitalization. Vaccine. 2012;30:A167-72.
- 56. Ramachandran M, Das BK, Vij A, Kumar R, Bhambal SS, Kesari N, *et al.* Unusual diversity of human rotavirus G and P genotypes in India. J Clin Microbiol. 1996;34:436-9.
- 57. Jain V, Das BK, Bhan MK, Glass RI, Gentsch JR. Indian Strain Surveillance Collaborating Laboratories. Great diversity of group A rotavirus strains and high prevalence of mixed rotavirus infections in India. J Clin Microbiol. 2001;39:3524-9.
- 58. Kang G, Raman T, Green J, Gallimore CI, Brown DW. Distribution of rotavirus G and P types in north and south Indian children with acute diarrhoea in 1998-99. Trans R Soc Trop Med Hyg. 2001;95:491-2.
- Das S, Sen A, Uma G, Varghese V, Chaudhuri S, Bhattacharya SK, *et al.* Genomic diversity of group A rotavirus strains infecting humans in eastern India. J Clin Microbiol. 2002;40:146-9.
- 60. Das S, Varghese V, Chaudhuri S, Barman P, Kojima K, Dutta P, *et al.* Genetic variability of human rotavirus strains isolated from Eastern and Northern India. J Med Virol.

2004;72:156-61.

- 61. Kang G, Arora R, Chitambar SD, Deshpande J, Gupte MD, Kulkarni M, *et al.* Multicenter, hospital-based surveillance of rotavirus disease and strains among Indian children aged <5 years. J Infect Dis. 2009;200:S147-53.
- 62. Kang G, Desai R, Arora R, Chitamabar S, Naik TN, Krishnan T, *et al.* Diversity of circulating rotavirus strains in children hospitalized with diarrhea in India, 2005-2009. Vaccine. 2013;31:2879-83.
- 63. Bhan MK, Kumar R, Khoshoo V, Arora NK, Raj P, Stintzing G, *et al.* Etiologic role of enterotoxigenic Escherichia coli *and* rotavirus in acute diarrhoea in Delhi children. Indian J Med Res. 1987;85:604-7.
- 64. Raj P, Bhan MK, PrasadAK, Kumar R, Bhandari N, Jayashree S. Electrophoretic study of the genome of human rotavirus in rural Indian community. Indian J Med Res. 1989;89:65-8.
- 65. Bhan MK, Raj P, Bhandari N, Svensson L, Stintzing G, Prasad AK, *et al.* Role of enteric adenoviruses and rotaviruses in mild and severe acute enteritis. Pediatr Infect Dis J. 1988;7:320-3.
- 66. Panigrahi D, Agarwal KC, Kaur T, Ayyagari A, Walia BN. A study of rotavirus diarrhoea in children in a north Indian community. J Diarrhoeal Dis Res. 1985;3:20-3.
- Malik A, Rattan A, Malik MA, Shukla I. Rotavirus diarrhoea of infancy and childhood in a North Indian town– epidemiological aspects. J Trop Pediatr. 1987;33:243-5.
- Yachha SK, Singh V, Kanwar SS, Mehta S. Epidemiology, subgroups and serotypes of rotavirus diarrhea in north Indian communities. Indian Pediatr. 1994;31:27-33.
- Nath G, Singh SP, Sanyal SC. Childhood diarrhoea due to rotavirus in a community. Indian J Med Res. 1992;95: 259-62.
- 70. Nath G, Shukla BN, Reddy DC, Sanyal SC. A community study on the aetiology of childhood diarrhoea with special reference to Campylobacter jejuni in a semiurban slum of Varanasi, India J Diarrhoeal Dis Res. 1993;11:165-8.
- Desai HS, Banker DD. Rotavirus infection among children in Bombay. Indian J Med Sci. 1993;4:27-33.
- 72. Kelkar SD, Purohit SG, Boralkar AN, Verma SP. Prevalence of rotavirus diarrhea among outpatients and hospitalized patients: a comparison. Southeast Asian J Trop Med Public Health. 2001;32:494-9.
- 73. Krishnan T, Burke B, Shen S, Naik TN, Desselberger U. Molecular epidemiology of human rotaviruses in Manipur: genome analysis of rotaviruses of long electropherotype and subgroup I. Arch Virol. 1994;134:279-92.
- Maiya PP, Pereira SM, Mathan M, Bhat P, Albert MJ, Baker SJ. Aetiology of acute gastroenteritis in infancy and early childhood in southern India. Arch Dis Child. 1977;52:482-5.
- 75. Mathew M, Mathan MM, Mani K, George R, Jebakumar K, Dharamsi R, *et al.* The relationship of microbial pathogens to acute infectious diarrhoea of childhood.J Trop Med Hyg. 1991;94:253-60.
- Reesu R, Bhattacharya D, Chaaithanya IK, Muruganandam N, Bharadwaj AP, Singhania M, *et al.* Emergence of an unusual genotype of rotavirus in andaman and nicobar islands, India. Intervirology. 2013;56:134-9.

- 77. Chakravarti A, Kumaria R, Chakravarti A. Prevalence of genotypes G1-G4 of human rotavirus in a hospital setting in New Delhi. Indian J Gastroenterol. 2005;24:127-8.
- Sharma S, Ray P, Gentsch JR, Glass RI, Kalra V, Bhan MK. Emergence of G12 rotavirus strains in Delhi, India, in 2000-2007. J Clin Microbiol. 2008;46:1343-8.
- 79. Zade JK, Chhabra P, Chitambar SD. Characterization of VP7 and VP4 genes of rotavirus strains: 1990-1994 and 2000-2002. Epidemiol Infect. 2009;137:936-42.
- Awachat PS, Kelkar SD. Evidence of rotavirus AU32 like G9 strains from nontypeable fecal specimens of Indian children hospitalized during 1993-1994. J Med Virol. 2004;74:656-61.
- Awachat PS, Kelkar SD. Unexpected detection of simian SA11-human reassortant strains of rotavirus G3P[8] genotype from diarrhea epidemic among tribal children of Western India. J Med Virol. 2005;77:128-35.
- 82. Chitambar SD, Lahon A, Tatte VS, Maniya NH, Tambe GU, Khatri KI, *et al.* Occurrence of group B rotavirus infections in the outbreaks of acute gastroenteritis from western India. Indian J Med Res. 2011;134:399-400.
- 83. Samajdar S, Varghese V, Barman P, Ghosh S, Mitra U, Dutta P, *et al.* Changing pattern of human group A rotaviruses: emergence of G12 as an important pathogen among children in eastern India. J Clin Virol. 2006; 36:183-8.
- 84. Khetawat D, Dutta P, Bhattacharya SK, Chakrabarti S. Distribution of rotavirus VP7 genotypes among children suffering from watery diarrhea in Kolkata, India. Virus Res. 2002;87:31-40.
- 85. Barman P, Ghosh S, Samajdar S, Mitra U, Dutta P, Bhattacharya SK, *et al.* RT-PCR based diagnosis revealed importance of human group B rotavirus infection in childhood diarrhoea. J Clin Virol. 2006;36:222-7.
- 86. Mukherjee A, Nayak MK, Roy T, Ghosh S, Naik TN, Kobayashi N, *et al.* Detection of human G10 rotavirus strains with similarity to bovine and bovine-like equine strains from untypable samples. Infect Genet Evol. 2012;12:467-70.
- 87. Samajdar S, Ghosh S, Dutta D, Chawla-Sarkar M, Kobayashi N, Naik TN. Human group A rotavirus P[8] Hun9-like and rare OP354-like strains are circulating among diarrhoeic children in Eastern India. Arch Virol. 2008;153:1933-6.
- Mukherjee A, Chattopadhyay S, Bagchi P, Dutta D, Singh NB, Arora R, *et al.* Surveillance and molecular characterization of rotavirus strains circulating in Manipur, north-eastern India: increasing prevalence of emerging G12 strains.Infect Genet Evol. 2010;10:311-20.
- 89. Jain V, Parashar UD, Glass RI, Bhan MK. Epidemiology of rotavirus in India. Indian J Pediatr. 2001;68:855-62.
- Anand T, Raju TA, Rao MV, Rao LV, Sharma G. Symptomatic human rotavirus subgroups, serotypes and electropherotypes in Hyderabad, India. Indian J Med Res. 2000;112:1-4.
- 91. Ramani S, Banerjee I, Gladstone BP, Sarkar R, Selvapandian D, Le Fevre AM, et al. Geographic information systems and genotyping in identification of rotavirus G12 infections in residents of an urban slum with

INDIAN PEDIATRICS

subsequent detection in hospitalized children: emergence of G12 genotype in South India. J Clin Microbiol. 2007;45:432-7.

- 92. Mukhopadhya I, Anbu D, Iturriza-Gomara M, Gray JJ, Brown DW, Kavanagh O, *et al.* Anti-VP6 IgG antibodies against group A and group C rotaviruses in South India. Epidemiol Infect. 2010;138:442-7.
- 93. Banerjee I, Ramani S, Primrose B, Iturriza-Gomara M, Gray JJ, Brown DW, *et al.* Modification of rotavirus multiplex RT-PCR for the detection of G12 strains based on characterization of emerging G12 rotavirus strains from South India. J Med Virol. 2007;79:1413-21.
- 94. Ramachandran M, Das BK, Vij A, Kumar R, Bhambal SS, Kesari N, *et al.* Unusual diversity of human rotavirus G and P genotypes in India. J Clin Microbiol.1996;34:436-9.
- Kelkar SD, Dindokar AR, Dhale GS, Zade JK, Ranshing SS. Culture adaptation of serotype G6 human rotavirus strains from hospitalized diarrhea patients in India. J Med Virol. 2004;74:650-5.
- 96. Tran TN, Nakagomi T, Nakagomi O. Evidence for Genetic Reassortment between Human Rotaviruses by Full Genome Sequencing of G3P[4] and G2P[4] Strains Cocirculating in India. Trop Med Health. 2013;41:13-20.
- 97. Uppal B, Wadhwa V, Mittal SK. Nosocomial diarrhea. Indian J Pediatr. 2004;71:883-5.
- Dutta P, Bhattacharya SK, Saha MR, Dutta D, Bhattacharya MK, Mitra AK. Nosocomial rotavirus diarrhea in two medical wards of a pediatric hospital in Calcutta. Indian Pediatr. 1992;29:701-6.
- Dutta P, Mitra U, Rasaily R, Bhattacharya SK, De SP, Sen D, *et al.* Prospective study of nosocomial enteric infections in a pediatric hospital, Calcutta. Indian Pediatr. 1993;30:187-94.
- 100. Desikan P, Daniel JD, Kamalarathnam CN, Mathan MM. Molecular epidemiology of nosocomial rotavirus infection. J Diarrhoeal Dis Res. 1996;14:12-5.
- 101. Kamalaratnam CN, Kang G, Kirubakaran C, Rajan DP, Daniel DJ, Mathan MM, *et al.* A prospective study of nosocomial enteric pathogen acquisition in hospitalized children in South India. J Trop Pediatr. 2001;47:46-9.
- 102. Ramani S, Sowmyanarayanan TV, Gladstone BP, Bhowmick K, Asirvatham JR, Jana AK, *et al.* Rotavirus infection in the neonatal nurseries of a tertiary care hospital in India. Pediatr Infect Dis J. 2008;27:719-23.
- 103. Cicirello HG, Das BK, Gupta A, Bhan MK, Gentsch JR, Kumar R, *et al.* High prevalence of rotavirus infection among neonates born at hospitals in Delhi, India: predisposition of newborns for infection with unusual rotavirus. Pediatr Infect Dis J. 1994;13:720-4.
- 104. Vethanayagam RR, Ananda Babu M, Nagalaxmi KS,

Maiya PP, Venkatesh HA, Purohit S, *et al.* Possible role of neonatal infection with the asymptomatic reassortant rotavirus (RV) strain I321 in the decrease in hospital admissions for RV diarrhea, Bangalore, India, 1988-1999. J Infect Dis. 2004;189:2282-9.

- 105. Bhan MK, Lew JF, Sazawal S, Das BK, Gentsch JR, Glass RI. Protection conferred by neonatal rotavirus infection against subsequent rotavirus diarrhea. J Infect Dis. 1993;168:282-7.
- 106. Banerjee I, Gladstone BP, Le Fevre AM, Ramani S, Iturriza-Gomara M, Gray JJ, *et al.* Neonatal infection with G10P[11] rotavirus did not confer protection against subsequent rotavirus infection in a community cohort in Vellore, South India. J Infect Dis. 2007;195:625-32.
- 107. Broor S, Ghosh D, Mathur P. Molecular epidemiology of rotaviruses in India. Indian J Med Res. 2003;118:59-67.
- 108. Iturriza Gomara M, Kang G, Mammen A, Jana AK, Abraham M, Desselberger U, *et al.* Characterization of G10P[11] rotaviruses causing acute gastroenteritis in neonates and infants in Vellore, India. J Clin Microbiol. 2004;42:2541-7.
- 109. Ray P, Sharma S, Agarwal RK, Longmei K, Gentsch JR, Paul VK, *et al.* First detection of G12 rotaviruses in newborns with neonatal rotavirus infection at all India Institute of Medical Sciences, New Delhi, India. J Clin Microbiol. 2007;45:3824-7.
- 110. Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD; WHO-coordinated Global Rotavirus Surveillance Network. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: A systematic review and metaanalysis. Lancet Infect Dis. 2012;12:136-41.
- 111. Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, Bassani DG, *et al.* Global, regional, and national causes of child mortality in 2008: A systematic analysis. Lancet. 2010;375: 1969-87.
- 112. Bryce J, Boschi-Pinto C, Shibuya K, Black RE. WHO estimates of the causes of death in children. Lancet. 2005; 365:1147-52.
- 113. Parashar UD, Gibson CJ, Bresee JS, Glass RI Rotavirus and severe childhood diarrhea. Emerg Infect Dis. 2006;12:304-6.
- 114. Ramani S, Kang G. Burden of disease *and* molecular epidemiology of group A rotavirus infections in India. Indian J Med Res. 2007;125:619-32.
- 115. Kosek M, Bern C, Guerrant RL. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ. 2003;81:197-204.

WEB TABLE I RESULTS OF LITERATURE SEARCH

Q. No.	Research Question	Search engine	Total	After title screening	After abstract screening	After reading full text	From cross reference	Additiona search e	ll Finally included
1	Epidemiology of rotavirus diarrhea in under-5 hospitalized children from different parts of India	(epidemiology* OR burden OR morbidity OR mortality or incidence OR prevalence OR profile OR hospital) AND (rotavirus OR rotavirus diarrhea OR rotavirus gastroenteritis OR rotavirus disease) AND India	171	97	87	48	4	0	54
2	Epidemiology of rotavirus diarrhea in under-5 children in community from different parts of India	(epidemiology* OR burden OR morbidity OR mortality or incidence OR prevalence OR profile OR community) AND (rotavirus OR rotavirus diarrhea OR rotavirus gastroenteritis OR rotavirus disease) AND India	152	82	27	15	0	0	16
3	Demographic profile of rotavirus diarrhea in under-5 Indian children	(epidemiology* OR demography OR profile OR hospital OR community) AND (rotavirus OR rotavirus diarrhea OR rotavirus gastroenteritis OR rotavirus disease) AND India	138	95	46	35	0	0	35
4	Molecular epidemio- logy of rotavirus diarrhea in under-five children of India	(classification* OR genetics OR phylogeny OR virology OR genotype OR polymerase chain reaction OR classification OR genetic variation OR molecular epidemiology) AND (rotavirus OR rotavirus diarrhea OR rotavirus gastroenteritis OR rotavirus disease) AND India	137	100	54	47	2	1	49
5	Incidence of rotavirus infection as a cause of nosocomial diarrhea	(epidemiology* OR burden OR morbidity OR mortality or incidence OR prevalence OR profile OR hospital OR nosocomial) AND (rotavirus OR rotavirus diarrhea OR rotavirus gastroenteritis OR rotavirus disease) AND India	122	18	9	5	0	0	5
6	Mortality from rotavirus infection in under-5 children from different parts of India	(epidemiology* OR burden OR morbidity OR morbidity OR mortality or incidence OR prevalence OR profile OR hospital OR community OR case fatality) AND (rotavirus OR rotavirus diarrhea OR rotavirus gastroenteritis OR rotavirus disease) AND India	168	38	22	14	0	1	15

Reference	Place of study	Study period (year)	Age group (yr)	Detection method	Total stool samples	Total stool samples	G strains not	Total stool samples	Total stool samples
					tested for G strains (n)	positive for G strains (n)	tested	tested for P strains (n)	tested positive for P strains(n)
Northern India									
Husain, et al. [19]	Delhi	1990-1991	<5	RT-PCR	51	44	G9, G12	57	45
Chakravarti, et al. [77]	Delhi	1998 -2000	<3	RT-PCR	100	66	G9, G12	134	84
Sharma, <i>et al</i> . [78]	Delhi	2000 - 2001	<5	RT-PCR	465	437	None	457	428
Bahl, et al. [23]	Delhi	2000 - 2004	<5	RT-PCR	135	89	G12	NT	0
Chakravarti, et al. [22]	Delhi	2005-2007	<2	RT-PCR	100	100	None	100	100
Mishra, <i>et al.</i> [26]	Lucknow	2004 - 2008	<3	ELISA,PAGE	79	75	G12	79	75
Western India									
Awachat, <i>et al</i> . [81]	Pune	1993-1994	<2	RT-PCR	Examine 10 (28.57 The result significant previousl	d 35 nont %) were i lts indicat nt propor y nontype	ypeable sp dentified as e that serot tion of spe eable.	ecimens o rotavirus s ype G9 ma ecimens, v	f Rotavirus. serotype G9. ay represent which were
Kelkar, et al. [29]	Pune	1992-1996	<5	ELISA	205	107	G9, G12	NT	NT
Kelkar, et al.[30]	Pune	1990-1997	<5	PAGE	111	111	G12	None	None
Desai, et al.[28]	Thane	2000-2001	<5	RT-PCR	7	7	-	-	-
Zade, et al. [79]	Pune	1990- 1994, 2000-2002	Children	RT-PCR	90	90	G9, G12	89	89
Awachat, <i>et al.</i> [81]	Thane	2000-2001	Children	RT-PCR	Simian G time as et	3, SA111 iological	ike strains a agents of di	re isolated arrhea in h	l for the first umans
Chitambar, et al. [82]	Surat	2004	NK	RT-PCR	Group B (100%) c	Rotavirus ases	(NSP2 gen	e) was det	ected in 295
Chitambar, et al. [82]	Sangli, M	aharashtra	2009	NK	RT-PCR detected	Group in 5 (17.29	B Rotaviru %) cases	is (NSP2	gene) was
Eastern India									
Samajdar, et al. [83]	Kolkata	2000 - 2004	<4	RT-PCR	147	147	None	140	140
Khetawat, et al. [84]	Kolkata	2000 - 2004	<4	RT-PCR	140	124	G12	NT	0
Barman, <i>et al.</i> [85]	Kolkata	2002-2004	<3	RT-PCR	37 (18.5 rotavirus showed n	%) spora infection nixed infe	ndic cases was detecte ction with g	of huma ed of whic group A rot	n group B h 15 (7.5%) aviruses
Mukherjee, et al. [86]	Kolkata	2004-2006	<4	RT-PCR	60	31	None	60	31
Samajdar, <i>et al</i> . [97]	Kolkata a	nd Orissa	2004-2006	<4	RT-PCR children. sequence strains r within ra pointing strains.	P[8] stra Phylogen s of 16 d evealed f are OP35 towards	tins were is etic analysis of these stu- our disting 4-like and co-prevaler	olated in 3 is of VP8* rains with ct lineages Hun9-lik nce of div	 317 (43.2%) amino acid other P[8] s, clustered te lineages, ergent P[8]
Samajdar, et al. [40]	Kolkata	2005 - 2006	Children	RT-PCR	249	197	None	249	204

WEB TABLE II ROTAVIRUS SEROTYPES DETECTED FROM VARIOUS PARTS OF INDIA

Contd.....

BURDEN OF ROTAVIRUS DIARRHEA IN INDIAN CHILDREN

KUMAR, et al.

Contd. from pre-page

Reference	Place of study	Study period (year)	Age group (yr)	Detection method	Total stool samples tested for G strains (n)	Total stool samples positive for G strains (n)	G strains not tested	Total stool samples tested for P strains (n)	Total stool samples tested positive for P strains(n)
Mukherjee, et al. [88]	Manipur	2005-2006	<5	RT-PCR	244	244	None	244	244
Southern India									
Jain, et al. [89]	Vellore	1984	Children	PAGE/ELISA	46	32	G9, G12	NT	NT
Aijaz, <i>et al.</i> [46]	Mysore	1988-1994	Children	PAGE/ELISA	200	130	G9, G12	NT	NT
Jain, et al. [89]	Chennai	1995 - 1999	Children	PAGE/ELISA	90	70	G9, G12	NT	NT
Saravanan, et al. [48]	Chennai (21)	1995 - 1999	<3	PAGE/ELISA	118	118	G9, G12	NT	NT
Ananthan, et al. [47]	Chennai	1995 - 1999	Children	NK	48	48	G12	NT	NT
Kang, et al. [53]	Vellore	1995 - 1999	<5	RT-PCR	126	101	G12	126	78
Anand, et al. [90]	Hyd	1995 - 1999	Children	PAGE	46	29	G9, G12	NT	0
Mukhopadhya, et al. [92]	Vellore ²	1999-2000	<10	RT-PCR	20	20	None	20	20
Ramani, <i>et al</i> . [91]	Vellore	2002 - 2006	Children	RT-PCR	452	282	None	NT	0
Banerjee, et al. [54]	Vellore (26) ¹	2000 - 2004	Children	RT-PCR	161	129	G12	166	100
Gladstone, et al.[3]	Vellore	2002-2004	<5	RT-PCR	472	472	None	472	472
Banerjee, et al.[93]	Vellore	2005	<5	RT-PCR	13	13	Only G12 for seque phylogen	2 strains we ncing and etic analys	ere taken is
Sowmyanarayanan, <i>et al.</i> [55]	Vellore	2005-2008	<5	RT-PCR	354	341	None	354	296
Multiple locations									
Ramachandran, et al. [94]	Multiple	1993	Children	RT-PCR	63	56	G12	62	55
Jain, et al.[89]	Multiple	1995	Children	PAGE/ELISA	93	74	G9, G12	91	72
Jain, et al. [57]	Multiple	1995 - 1999	Children	RT-PCR	287	265	G12	277	253
Das, et al. [59]	Multiple	1995 - 1999	Children	RT-PCR	159	130	None	139	120
Kang, et al. [58]	Multiple	1998 - 1999	Children	RT-PCR	82	68	G12	82	52
Das, et al. [60]	Multiple	2001	<4	RT-PCR	161	126	G12	126	109
Kang, et al. [61]	Multiple	2005 - 2009	<4	RT-PCR	1375	1177	None	1375	1166

NT: not typeable.

¹ Rotavirus was detected in 82/1,152 (7.1%) episodes of diarrhea in the community and 94/343 (27.4%) cases in the hospital. In the community, the genotypes identified in symptomatic patients, in order of frequency, were G1 (36.5%), G10 (17.1%), G2 (15.9%), and G9 (7.3%) and mixed infections (7.3%). The most common G-P combinations were G1P[8], G2P[4], G1P[4], and G10P[11]. The distribution of G types from hospitalized children was G1 (46.8%), G9 (19.1%), G2 (8.5%), G10 (1.1%), and 4.3% mixed infections. The most common G-P combinations were G1P[8] and G9P[8]. ²Anti-group C VP6 antibodies were detected in 237 of 936 samples with a seroprevalence for group C of 16.79% in children aged <10 years.

Reference	Place of study	Gl	G2	G3	<i>G4</i>	G9	G12	G-mixed	G UT/	G Novel(n) Other
Northern India										
Husain, <i>et al</i> . [19] Chakravarti, <i>et al</i> . [77]	Delhi Delhi	17 31	13 12	5 18	4 5	NT NT	NT NT	5 NR	7 34	G6 (3)
Sharma, <i>et al.</i> [78]	Delhi	120	116	11	2	67	67	54G2P[11], G3P[11]	28	-
Bahl, et al. [23]	Delhi	32	18	8	0	21	NT	10P[8]G1,P[4]G2, P[8]G9, P[6]G1, P[6]G9, P[6]G3	46	-
Chakravarti, et al. [25]	Delhi	60	16	3	-	8	2	G1P[8], G1P[4], G1P[6]	-	
Mishra, et al. [26]	Lucknow	30	12	13	4	8	NT	8G1P[8], G3P[6], G1P[6], G2P[8]	4	-
Western India										
Desai, et al.[28]	Thane	-	-	7	-	-	-	-	-	-
Kelkar, et al. [30]	Pune	15	49	1	9	NT	NT	33	98	-
Zade, <i>et al</i> . [79]	Pune	43	32	7	6	2	NT	(G1P[8], G2P[4], G3P[8], G4P[8]) -79.2% in 1990-1994 and 92.3% in 2000- 2002.G9P[8] -1.3% in 1990-1994 and 7.7% in 2000-2002. Unusual strains (G1P[6],G1P[4], G1P[19], G2P[8], G3P[4], G4P[6]) detected in 19.5%	0	-
Kelkar, et al.[32]	Pune	35	34	16	12	NT	NT	0	0	G6(6), G8(4), G10(4)
Kelkar, <i>et al</i> [95]	Pune	Isola strain The i Fran	ted nu ns indi solate: ce.	cleotic cating s were	le sequ >94% more c	iences identit close to	of cDI y with G6 RF	NA derived from the ger G6, the serotype, general ⁷ strain, which is a bovine	ne encodin ly associat rotavirus,	g VP7 of two ed with cattle. reported from
Eastern India										
Samajdar, et al. [83]	Kolkata	79	33	0	0	3	25	7	NR	-
Khetawat, et al. [84]	Kolkata	49	27	0	30	0	NT	18	16	-
Samajdar, <i>et al.</i> [41]	Kolkata ^a	82	65	0	0	20	28	G1P[8], G2P[4], G9P[8], G12P[8], G12P[6]	-	-
Mukherjee, et al. [86]	Kolkata	0	0	0	0	0	0	G9P[4](8), G12P8, G1P[8](6), G1P[8](6),		
								G10P[4](6), G2P[4](3)	-	G10(6)

WEB TABLE III G SEROTYPES ISOLATED FROM DIFFERENT PARTS OF INDIA

Contd.....

Contd. from pre-page

Reference	Place of study	<i>G1</i>	<i>G</i> 2	G3	<i>G4</i>	<i>G</i> 9	G12	G-mixed	G UT/	G Novel(n)
Jain, <i>et al.</i> [89]	Manipur	126	57	0	2	11	20	23G10[4](36%), G2P[4](22%), G12P[6](8%), G9P[6](3%)	4	$\begin{array}{c} G10(1)\\ G(1+2)\\ P[6](4),\\ G(1+2)\\ P[8](5),\\ G(2+9)\\ P[4](8),\\ G(2+9)\\ P[6](4),\\ G(1+12)\\ P[4](1),\\ G(1+12)\\ P[6](1)\\ \end{array}$
Southern India										
Aijaz, <i>et al</i> . [46]	Mysore	38	20	65	7	0	NT	NR	70	-
Ananthan, <i>et al.</i> [47]	Chennai	0	0	0	0	0	0	G[2,1], P[4,8](7). G2P[4]-P[8](12)	NR	-
Saravanan, et al. [48]	Chennai	11	78	2	16	0	NT	G2P[4,8], G1-G2P[4,8]	NR	-
Kang, et al. [53]	Chennai	7	33	1	0	0	NT	7	NR	-
Mathew, et al.[45]	Kerala	-	-	-	-	-	-	88G1P[8] (49.7%) G9P[8] (26.4%), G2P[4] (5.5%), G9P[4] (2.6%) G12P[6] (1.3%)		
Kang, et al. [58]	Vellore	50	24	1	30	5	NT	G1P1A[8], G1P1B[4], G2P1B[4], G4P1A[8]	25	-
Anand, et al. [90]	Hyderabad	16	0	0	8	NT	NT	5 17	-	
Ramani, <i>et al</i> .[91]	Vellore	155	91	1	2	59	9	31G12P[6](10), G12P[8](3)	101	G8 (1) and G10 (69)
Banerjee, et al. [54]	Vellore ¹	74	21	0	0	24	NT	10 32	-	
Sowmyanarayanan, <i>et al.</i> [55]	Vellore*	0	0	0	0	0	0	G2P [4] (30.8%), G1P [8] (17.8%) and G9P [8] (15.8%)	-	-
Mukhopadhya, et al. [92]	Vellore	0	0	0	0	0	0	G1P[8], G2P[4], G10P[11]	-	-
Banerjee, et al.[93]	Vellore	0	0	0	0	0	13	0 -	-	
Gladstone, et al.[3]	Vellore	The G9P G1P	most [8] (7.1 [6] (0.	commo 2%), G 6%).	on typ 1P[4]	es wer (4.4%)	e G1P , G10P	[8] (15.9%), G2P[4] (13 [4] (1.7%), G9P[4] (1.59	3.6%), G10 %), G12P[6	0P[11](8.7%), 6] (1.1%), and
Multiple locations										
Ramachandran, et al. [94]	Multiple	7	14	7	6	15	NT	7 7	-	
Jain, et al.[89]	Multiple	15	3	2	12	NT	NT	NR 14	-	
Jain, et al. [57]	Multiple	51	99	2	32	50	NT	31 22	G8(1)	
Das et al. [59]	Multiple	61	38	0	20	0	0	11 29	-	
Kang, et al. [58]	Multiple	33	7	9	12	7	NT	NR 14	-	

Contd.....

Contd. from pre-page

Reference	Place of study	<i>G1</i>	G2	G3	<i>G4</i>	<i>G</i> 9	G12	G-mixed	G UT/	G Novel(n)
Das <i>et al.</i> [60]	Multiple	62	17	0	6	0	NT	G1P[6],G2P[8], G2P[6],G4P[4], G4P[6]	15	-
Kang <i>et al.</i> [61]	Multiple [*]	G2P[4 G1[P G4P[4	G2P[4] (354 strains [25.7%]), G1P[8] (304 [22.1%]), and G9P[8] (117 [8.5%]), G1[P4](11), G1P[6](15), G2P[6](15), G2P[8](16), G9P[4](3), G9P[6](7), G3P[8], G4P[4](1), G10P[6](2), and G2P[10](1), G10P[11](1)							
Kang, <i>et al.</i> [62]	Multiple [*]	G1[P G2[P (25), G12[4] (14 4](489 G9[P6 P6](2)), G1[])), G2[]] (16), , G12[]	P6] (2 P6](17 G9[P8 P8](4)	1), G1 7), G2[] 5] (176 , G12[[P8] (: P8] (26), G9[H P unty]	545), G1[P untyped] (114), G2[P untyped] (48), G2 P untyped] (150), G9[P M ped] (4)	4), G1[P [P Mixed] ixed] (4),	Mixed] (22), (15), G9[P4] G12[P4] (2),

*Only detected combination of strains; NT - Not typed; NR - Not reported; UT - Untypeable; ^aPhylogenetic analysis of 13 G9 strains revealed clustering within G9 lineage III. Nine of 28 G12 strains were sequenced and exhibited phylogenetic clustering with previously reported G12 strains from Kolkata.

StudyGroup [reference]	Place	<i>P[4]</i>	P[6]	P[8]	P mixed	P UT/Other
Northern India						
Husain, et al. [19]	Delhi	14	4	23	2	14
Chakravarti, et al. [77]	Delhi	16	29	32	7	50
Sharma, et al. [78]	Delhi	90	104	162	72	29
Chakravarti, et al. [22]	Delhi	26	17	40	G1P[8] (26%),	0
					G1P[4] G1P[6]	
Mishra, et al. [26]	Lucknow	11	24	35	5	4
Western India						
Zade, et al. [79]	Pune	38	11	40	0	0
Eastern India						
Samajdar, et al. [83]	Kolkata	45	14	31	50	0
Samajdar, et al. [40]	Kolkata	64	15	111	14	-
Southern India						
Kang, et al. [53]	Vellore	32	7	39	NR	-
Sowmyanarayanan, et al. [55]	Vellore	28	3	65	4	66
Multiple locations						
Ramachandran, et al. [108/94]	Multiple	13	27	8	7	7
Jain, et al. [57]	Multiple	63	88	69	33	24
Kang, et al. [58]	Multiple	19	2	31	NR	22
Das, et al. [59]	Multiple	35	8	51	26	19
Das <i>et al.</i> [60]	Multiple	19	61	19	-	27

WEB TABLE IV P SEROTYPES ISOLATED FROM DIFFERENT PARTS OF INDIA

NT: Not typed; NR: Not reported; UT: Untypeable.