PHYSICAL GROWTH IN INDIAN AFFLUENT CHILDREN (BIRTH - 6 YEARS)

D.K. Agarwal K.N. Agarwal

ABSTRACT

Growth characteristics, viz., height, weight and circumferences of head, chest and mid-arm were pleasured on urban affluent children from seven centres (Bangalore, Calcutta, Delhi, Kota, Ludhiana and Varanasi-Nutrition Foundation of India study). On each age and sex point there were 200 observations except at 18 and 72 months. The percentiles on pooled data were calculated by smoothed cubic spline least square method. This pooled data showed values lower than European and NCHS (American) standards. Centrewise comparison showed that Ludhiana children approached the latter. The differences in growth seem to be possibly due to lower velocity in Indian children of present study in the first 18 months as compared to American children.

Keywords: Affluent, Growth, Preschool, Percentiles, Velocity.

From the Department of Pediatrics, Institute of Medical Sciences, BHU, Varanasi.

Reprint requests: Prof. (Mrs) D.K Agarwal, New E/10, Jodhpur Colony, BIIU, Varanasi 221 005.

Received for publication: July 21, 1993; Accepted: October 26, 1993

The WHO(1) has recognized the need for a growth chart which could be used internationally particularly by primary health care workers. Reference values for these charts examined by the WHO group were derived from data collected in Mexico, Netherlands, Sweden, Switzerland, UK and USA(2-5), in consultation with experts from various parts of the world and field-tested in 10 centres of different countries in 1974. It was later decided that the WHO chart should be based on data from the United States National Child Health Examination Survey(6) because they better fitted the criteria required. When devising these charts for international use, the WHO group recognized that countries or regions might eventually develop local standards, but the reference values presented by WHO(1) should be effective in the interim.

The objective of the present study was to investigate the growth performance of Indian children below six years of age, not subject to any obvious socio-economic constraints that could be expected to impair growth, only children (below six years) belonging to the affluent population segments (urban) in these cities were selected. The study was carried out in seven different cities of India: Bangalore, Bombay, Calcutta, Delhi, Kota, Ludhiana, and Varanasi.

Material and Methods

The study was carried out for two years (1985-1987) as two different cohorts. Cohort-I consisted of infants from birth to one year and Cohort-II included children from - one to six years of age. The mixed longitudinal study design was adopted and the data were analysed on the basis of this format.

The two cohorts were simultaneously selected. Cohort-I included infants at birth + 15 days up to three months of age and followed at three monthly intervals till their first birthday. Cohort-II was of children from 12 to 72 months of age. Children could enter in the study at any time but the anthropometric readings of each child were recorded at fixed age points, i.e., 12,18, 24, 30, 36, 42, 48, 54, 60, 66 and 72 months. Four hundred eighteen boys and 332 girls were thus included in Cohort-I. while 1011 boys and 874 girls were subjects for Cohort -II. The registration for both cohorts was contained for one full year and those children who had minimum of three follow ups at three consecutive time points alone were included for data analysis.

In *Table I* a consolidated statement indicating the number and percentage distribution of children from various centres of both cohorts has been presented. The distribution of registered children and number of observations at different age points is given in *Table II*.

Affluence in each family was identified by the income level, life style (as directly observed by the investigators), educational status, occupational status and awareness of basic principles of health, personal hygiene, sanitation and child rearing on the part of parents.

For the selection of subjects of Cohort-I, cooperation from Pediatricians and Obstetricians of leading nursing homes and private hospitals was obtained so that children born in these hospitals could be recruited for the study. Similarly, children for Cohort-II were taken from nurseries and private schools or private clinics.

Date of Birth: The exact date of birth of each subject was confirmed and verified

from parents and from birth certificates. In case of doubt regarding the exact age, the child was excluded from the study.

Anthropometric Measurements: Weight, height/length, mid-arm circumference, head circumference and chest circumference measurements were taken for each subject (in both the cohorts) in the study(7,8). The investigators were centrally trained and tools used were calibrated periodically.

Data Analysis: After combining the data for two cohorts from seven centres, we have analysed for percentiles (3rd, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 97th) at different age points according to sex for five parameters, *viz.*, weight, height and circumferences of head, chest and midarm using cubic spline method(9).

Estimation of Norms at Specified Ages: The estimate of norms or population mean values and their standard errors at specified ages for growth parameters were obtained from the mixed longitudinal series of observations(10,11).

Velocity: Since the percentile curves show only growth from one age point to another, therefore to estimate the rate of growth velocities were calculated. It was calculated by simply taking increment between birth to six months, 3 months to 9 months and so on. This was done for each child separately and for all the 5 parameters. After calculating the velocity at two age intervals, the velocity percentiles were also calculated for each age interval.

Pooling of Data

Height: Before pooling data from six centres, Bangalore, Calcutta, Delhi, Kota, Ludhiana and Varanasi, the variation was calculated from the 50th percentile of pooled data which is under 3% for all the study

	Bai	Bangalore	ore	B	Bombay	ay	Ü	Calcutta	8		Delhi	- 63	Lu	Ludhiana		Varanasi	asi		Kota		No. of	of
Cohort	m	U	F	B	U	F	8	U	ŀ.Ħ	B	U	H	B	GT	m	U	F	B	GT		measurements	ements
	24	24 24 48 , (6.4)	48 (6.4)	39	39 39 78 (10.4)	9 78 -(10.4)	93	93 85 178 (23.7)	(178 (23.7)	49	42 (1)	91 (12.1)	136	49 42 91 136 75 211 (12.1) (28.11)	-	77 67 144 (19.2)	144 (19.2)	1	1		1977	1556
	105 75 180 (9.5)	75 (9	180 (9.5)	22	13 (1	35 (1.8)	140	120) 260 (13.7)	143	104 2 (1.	1 247 (13.1)	248 1	22 13 35 140 120 260 143 104 247 248 193 441 210 220 430 143 149 292 (1.8) (13.7) (13.1) (23.3) (22.8) (15.4)	210) 220) 430 (22.8)	143	149 292 (15.4)		3396	2896
	129	129 99 228 (8.65)	228 (8.65)	61	52 (4	(4.28)	233	205	(16.62)	192	146 3 (1)	(12.82)	384	61 52 113 233 205 438 192 146 338 384 268 652 287 574 143 149 292 (4.28) (16.62) (12.82) (24.74) (21.78) (11.0)	287 4)	287	7 574 (21.78)	143	149 292 (11.04)	2 ()		1

Age (mo)		Ludhiana	Calcutta	Varanasi	Delhi	Kota
Bi	В	0.238	1.548	1.945	0.238	
ы	G	0.458	1.333	2.128	0.934	-
3	В	0.067	1.078	1.584	2.594	
3	G	0.338	1.523	1.523	1.522	-
6	в	3.128	0.061	0.516	2.490	
0	G	3.284	0.688	0.229	0.228	-
9	В	1.416	0.001	0.142	1.841	-
-	G	2.342	-	-	-	- ,
12	В	0.296	0.780	1.050	1.086	-
	G	0.395	1.102	1.510	1.646	-
18	в	0.831	0.719	0.397	0.719	2.269
	G	0.226	0.351	0.100	3.338	0.651
24	B	1.081	0.581	1.895	0.000	1.314
	G	0.024	0.012	1.047	0.035	0.670
30	В	0.155	0.486	2.342	0.155	1.668
	G	0.011	1.056	2.980	1.745	2.146
36	В	0.032	0.283	1.484	0.509	1.272
,	G	0.900	0.922	2.294	0.525	0.493
42	В	0.246	0.082	1.668	0.860	1.944
	G	1.138	0.228	2.513	0.703	0.455
48	B	0.984	0.050	1.388	1.091	0.298
	G	1.973	0.431	1.622	0.862	1.071
54	B G	0.974 2.702	0.231 0.000	1.002 0.427	1.494	0.473 0.427
(0)				•		
60	B G	1.724	0.038	1.349 1.028	1.677 1.207	1.087 1.528
66	в	1.537	0.264	1.419	0.646	0.191
00	Б G	2.213	2.259	2.591	1.527	0.191
72	В	1.197	0.079	1.796	0.000	0.960
12	G	0.813	2.732	1.405	0.000	0.500

 TABLE III-Per cent Variation Between the 50th Percentile of Pooled Height Smooth Curve with

 Different Centres According to Age

B = Boys; G = Girls; Bi = Birth.

TABLE IV-Height Percentiles (cm) (Cubic Spline Least Square Method) for Boys

Ą

8

Age (mo)	3rd	Sth	10th	20th	25th	30th	40th	50th	60th	70th	75th	80th	90th	95th	97th
Bi	. 47.6	47.7	40.2	49.1	50.3	49.4	49.8	50.4	50.7	50.9	51.2	51.4	52.2	52.7	53.2
3	56.3	56.7	57.4	58.0	58.2	58.4	56.9	(c.nc)	59.6	60.2	60.7	60.8	62.0	62.9	63.8
9	62.5	63.0	63.7	64.3	64.9	65.9	62.9	(1.10) (63.9	66.1	66.4	67.2	67.5	68.7	6.69	70.8
6	66.8	67.4	68.1	68.9	69.3	69.69	70.1	(0.70) 70.6	70.9	71.6	72.0	72.3	73.4	74.6	75.4
12	70.1	70.7	71.4	. 72.5	72.9	73.3	72.8	(c.7/)	74.7	75.6	75.3	76.0	77.0	79.2	78.8
18	75.6	76.2	77.0	78.5	79.0	79.5	90.1	(1.0/)	81.2 *	81.7	82.0	82.3	83.3	84.4	84.9
24	80.1	80.9	81.8	83.6	84.1	84.6	85.3	86.0	86.6	87.1	87.5	87.8	88.9	90.1	90.5
30	84.0	84.9	86.0	87.8	88.3	88.9	9.66	(0.05) 90.5	91.2	91.7	92.2	92.6	93.9	95.3	95.9
36	87.3	88.3	89.6	91.3	91.9	92.5	93.6	(90.4) 94.4	95.1	95.8	96.3	96.9	93.5	100.0	100.8
42	90.2	91.3	92.8	94.5	95.1	95.7	96.9	1.79 7.79	98.5	99.3	100.0	100.6	102.6	104.3	105.2
48	92.8	94.0	95.6	97.4	90.8	98.7	6.66	100.8	101.6	102.6	103.4	104.1	106.4	108.2	109.3
54	95.3	96.5	98.3	100.2	100.9	101.5	102.8	103.7	104.6	105.0	106.7	107.4	110.0	111.8•	113.1
60	6.76	99.1	100.9	103.1	103.9	104.6	105.8	106.2	107.7	109.0	109.9	110.8	113.4	115.1	116.4
99	100.7	101.9	103.6	106.4	107.2	108.0	109.0	110.0	111.1	112.4	113.3	114.2	116.7	118.3	119.5
72	103.9	104.9	106.5	110.1	111.0	111.9	112.6	113.6	114.9	116.2	117.0	117.9	120.0	121.3	122.2

Bi=Birth. Mean values are given in parentheses.

							Perc	Percentile							
Age (mo)	3rd	Sth	10th	20th	25th	30th	40th	S0th	60th	70th	75th	80th	90th	95th	97th
Bi	47.5	47.9	48.4	48.9	49.3	49.5	- 49.9	50.3	50.6	50.9	51.3	51.5	52.1	52.7	53.1
ŝ	55.8	56.4	57.1	57.9	58.1	58.2	58.7	59.1 59.1	59.4	60.09	60.3	9.09	61.5	62.2	62.9
- 9	61.6	62.3	63.2	64.1	64.3	64.5	65.0	(5.5)	66.0	66.4	66.8	67.1	68.1	68.9	69.7
6	65.6	66.4	67.5	68.5	67.8	69.1	69.69	(6.00)	70.5	71.0	71.5	71.7	72.3	73.7	74.5
12	68.6	69.5	70.7	71.8	72.2	72.6	73.2	73.5	74.1	74.6	74.9	75.3	76.5	77.4	78.0
18	73.8	74.8	76.2	77.6	78.1	78.5	79.3	79.8	80.2	80.8	81.2	81.5	82.9	83.9	84.4
24	78.2	79.3	80.9	82.0	83.0	83.6	84.5	(80.9) 85.0	85.4	86.1	86.6	86.9	88.4	89.6	90.2
30	82.0	83.2	84.9	86.6	87.2	87.8	88.8	(85.7) 89.9	* 0.06	90.8	91.3	91.7	93.2	94.6	95.3
36	85.3	86.6	88.4	90.2	90.9	91.5	92.6	93.3	94.0	94.9	95.4	95.8	97.5	0.66	6.00
42	88.3	1.68	91.5	93.5	94.1	94.7	95.8	(94.1) 96.7	97.5	98.5	0.99	399.5	101.2	102.9	104.0
48	91.2	92.6	94.5	96.5	97.1	£.77	98.9	(97.9) 99.8	100.8	101.9	102.4	102.9	104.6	106.4	107.6
54	94.1	95.5	97.3	5.99	100.1	100.7	101.8	(101.6) 102.9	104.0	105.1	105.5	106.1	107.8	109.6	110.9
09	97.2	98.6	100.3	102.5	103.1	103.7	104.8	(0.col) 106.0	107.1	108.2	108.8	109.3	110.9	112.6	113.8
99	100.6	102.0	103.5	105.8	106.5	107.1	108.1	(106.4)	110.5	111.4	112.0	112.6	114.1	115.4	116.4
12	104.5	105.9	107.1	109.6	110.2	110.9	111.8	(111.6) 113.1	114.1	114.9	115.5	116.1	117.4	118.3	118.7

TABLE V-Height Percentiles (cm) for Girls

INDIAN PEDIATRICS

383

Bi=Birth. Mean values are given in parentheses.

VOLUME 31-APRIL 1994

Age	Ludhia	ina	Varan	asi	Calcu	utta	De	lhi	Bangal	ore
(mo)	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Bi	50.5	0.1	49.3	0.2	50.0	0.1	49.9	0.2	51.5	0.6
3	59.2	0.2	60.4	0.3	60.1	0.2	60.5	0.2	60.9	0.5
6	63.3	0.1	65.8	0.3	66.0	0.1 -	66.5	0.3	66.0	0.7
9	69.4	0.1	70.4	0.2	70.4	0.1	71.2	0.2	70.9	0.6
12	74.0	0.1	74.7	0.2	75.0	0.1	75.4	0.3	74.9	0.6
18	80.5	0.2	80.2	0.4	84.4	0.2	81.1	0.6	79.4	1.0
24	85.0	0.2	84.7	0.4	87.7	0.1	86.1	0.6	85.7	0.7
30	90.5	0.2	89.4	0.3	91.5	0.3	91.1	0.5	90.7	0.5
36	94.6	0.2	92.9	0.5	94.5	0.4	95.1	0.5	94.2	0.4
42	98.5	0.2	96.5	0.4	97.5	0.4	98.0	0.4	97.9	0.4
48	102.2	0.3	99.8	0.4	100.9	1.4	100.7	0.4	101.3	0.4
54	105.3	0.3	102.9	0.4	104.1	0.4	103.9	0.4	104.6	0.4
60	108.8	0.3	106.3	0.4	107.1	0.4	107.6	0.5	107.5	0.4
66	112.2	0.3	108.9	0.5	110.1	0.2	110.1	0.5	110.1	0.3
72	115.9	0.4	112.1	0.7	112.7	0.4	109.7	0.6		

TABLE VI-Centrewise Mean* and SE of Boys Height (cm) for Age Estimated from Mixed Longitudinal Series

Bi=Birth; SE=Standard error.

* Means estimated at the specific ages using observations made at that age as well as at all preceding ages and at the immediately succeeding age.

The observed velocity percentile for boys and girls at different ages for 6 monthly intervals are presented in *Tables VIII* and *IX*. It appears that increments are higher in the early age period (first 12 months) and progressive deceleration was observed upto 6 years of age. The boys had marginally better gains than the girls. The total gain (50th percentile) in length/height (cm) from birth to 72 months was 63.2 and 62.8 cm for boys and girls, respectively.

Weight

The weight percentile data are presented in *Table X* and *XL* Boys have marginally higher weight by around 0.3 kg at all age points except for birth weight.

The weight means with standard error (SE) for age and sex for different centres are given in *Tables XII* and *XIII*. The means were similar for Bangalore, Calcutta, Delhi and Varanasi for girls as well as boys. The Ludhiana means were significantly higher for girls as compared to other centres.

The weight velocity at 6 monthly interval in percentiles is given in *Table XIV* and *XV for* boys and girls, respectively. The total gain (50th percentile) in weight (kg) from birth to 72 months of age for boys and girls

TABLE VIII-Velocity (6 Monthly Increments) Percentile of Height in cm (Boys)

							Percentile	ntile							
Age (mo)	3rd	Age 3rd 5th (mo)	10th	20th	25th	30th	40th	SOth	60th	70th	75th	80th	90th	95th	97th
9	8.9	9.6	11.7	13.4	14.0	14.6	15.5	16.3	17.3	18.8	18.3	19.3	21.0	22.8	24.5
6	4.3	5.3		8.5	9.1	9.5	10.1	10.8 '	11.6	12.5	13.0	13.5	15.2	16.7	17.9
12	3.2	4.2	5.5	7.0	7.5	7.9	8.5	0.6	9.5	10.1	10.7	11.2	12.8	14.5	15.3
- 18	2.6	2.8	3.4	4.9	5.3	5.5	5.8	6.0	6.3	6.5	6.7	7.0	7.6	8.2	8.4
24	2.2	2.4		3.4	3.7	4.0	4.5	4.9	5.3	5.7	5.9	6.2	6.9	8.4	9.4
30	2.0	2.4		3.8	4.1	4.4	4.9	5.3	5.8	6.4	6.8	7.1	7.7	8.0	9.2
36	1.6	2.0	2.4	3.0	3.2	3.3	3.7	4.0	4.7	5.3	5.7	6.0	6.9	7.7	8.3
42	0.5	0.9		2.4	2.5	2.8	3.2	3.5	3.8	43	4.6	4.9	5.7	6.7	8.3
48	0.7	1.1		2.5	2.7	2.9	3.2	3.5	3.9	4.3	4.5	4.8	5.6	5.6	7.1
54	1.1	1.4		2.5	2.7	2.9	3.2	3.5	3.8.	4.2	4.4	4.6	5.3	6.3	6.8
09	1.1	1.3	1.6	2.2	2.5	2.7	3.1	3.5	3.8	4.3	4.7	5.0	5.9	6.7	7.2
99	0.5	0.9	1.4	2.1	2.3	`2.5	2.9	3.2	3.6	3.9	4.2	4.6	6.1	7.2	8.1
72	1.0	1.2	1.7	2.2	2.4 /	2.5	2.8	3.1	3.4	3.8	4.0	4.3	5.3	63	7.0

.

h,

.

ø

VOLUME 31-APRIL 1994

٩

							Perci	Percentile							
Age (mo)	3rd	Sth	10th	20th	25th	30th	40th	50th	60th	70th	75th	80th	90th	95th	97th
~	8.5	9.8	11.1	12.8	13.4	14.0	15.1	16.0	16.8	17.7	18.3	19.1	21.2	23.2	24.7
6	4.9	5.4	6.3	7.5	8.3	8.8	9.6	10.3	11.1	11.9	12.4	13.1	14.9	16.1	17.8
2	4.5	5.0	5.9	7.0	7.5	7.9	8.5	9.1	9.7	10.4	10.9	11.5	13.1	14.4	15.6
00	2.1	2.3	2.7	3.6	4.1	4.3	5.1	5.3	5.7	5.9	6.1	6.4	6.9	8.4	8.8
24	1.7	2.1	2.7	3.7	4.1	4.3	4.6	5.0	5.4	5.8	6.0	6.4	7.5	8.7	9.4
30	2.1	2.5	3.1	3.6	3.8	4.1	4.5	4.8	5.4	6.1	6.4	7.0	7.9	8.6	8.9
36	0.9	1.2	1.6	2.5	2.9	3,2	3.6	4.0	4.6	5.3	5.6	5.9	6.6	7.0	T.T
42	1.5	1.9	2.2	2.6	3.0	3.1	3.4	3.7	4.0	4.4	4.6	4.9	5.7	6.4	7.2
48	0.8	1.3	2.1	2.6	2.8	3.0	3.3	3.7	4.1	4.5	4.8	5.1	6.0	7.0	7.0
54	0.9	1.2	1.8	2.4	2.6	2.8	3.2	3.5	3.7	4.1	4.3	4.6	5.2	6.0	6.6
60	0.7	1.1	1.5	2.2	2.4	2.7	3.1	3.5	3.8	4.3	4.6	4.9	6.4	7.4	8.1
99	0.6	1.0	1.7	2.3	2.4	2.6	2.9	3.2	3.6	3.8	4.0	4.4	5.6	7.6	8.9
72	1 2	1.6	2.1	2.4	2.5	20	2.9	32	35	3.4	4.0	43	5.0	26	5.8

							Perce	Percentile							
Age (mo)	3rd	Sth	10th	20th	25th	30th	40th	50th	* 60th	70th	75th	80th	90th	95th	97th
Bi	2.5	2.6	2.7	2.9	3.0	3.0	3.0	3.1	3.2	3.4	3.5	3.5	3.7	3.9	4.0
3	4.8	4.9	5.0	5.2	5.3	5.4	5.5	(c.c) 5.7	5.8	5.9	6.0	6.2	6.4	9.9	6.7
9	6.2	6.3	6.5	6.8	6.9	7.0	7.2	(0.0) 7.4 (0.0)	7.5	7.7	7.8	8.0	8.2	8.5	8.6
6	7.2	7.3	7.6	7.9	8.0	8.1	8.3	(0.7) 8.5 8.5	8.6	8.8	8.9	9.2	9.5	9.8	10.1
12	7.8	8.0	83	8.7	8.8	8.9	9.1	(77) 63	9.4	5.7	9.8	10.1	10.4	10.9	11.2
18	8.9	1.6	9.6	10.0	10.1	10.2	10.5	10.7	10.8	11.1	11.3	11.5	12.0	12.6	13.1
24	9.8	10.0	10.6	11.1	11.2	11.3	11.7	(CII) (CII)	12.0	12.4	12.5	12.8	13.4	14.1	14.7
30	10.6	10.9	11.4	12.0	12.1	12.3	12.5	12.9	13.1	13.5	13.7	14.0	14.7	15.4	16.0
36	11.3	11.6	12.1	12.7	12.9	13.1	13.5	(C.51) 13.8 (2.45)	14.1	14.4	14.7	15.0	15.8	16.6	17.2
42	11.9	12.3	12.8	13.4	13.6	13.8	14.3	14.6		15.3	15.6	16.0	16.9	17.7	18.3
48	12.5	12.9	13.4	14.1	14.4	14.6	15.0	15.4	15.9	16.2	16.5	17.0	17.9	18.7	19.3
54	13.1	13.6	14.1	14.9	15.1	15.3	15.8	16.2	19.7	17.1	17.4	17.9	18.9	19.8	20.3
09	13.8	14.3	14.9	15.8	16.0	16.1	16.6	17.1	17.6	18.0	18.4	18.9	19.9	21.0	21.5
99	14.5	15.0	15.8	16.8	17.0	17.0	17.6	18.1	18.6	19.1	19.5	19.9	21.0	22.3	22.7
72	15.3	15.8	17.0	18.1	18.1	18.1	18.7	(20.7) (20.7)	19.7	20.2	20.7	22.1	22.1	23.8	24.2

GROWTH IN AFFLUENT PRESCHOOLERS

								Percentile	ntile				n (2		
Age (mo)	3rd	Sth	10th	20th	n 25th	30th		40th	50th	60th	70th	75th	80th	90th	95th	97th
Bi	2.5	2.5	2.7	2.9	3.0		3.0 .	3.0	3.2	3.2	3.3	3.4	3.5	3.8	3.9	3.9
3	4.5	4.6	4.8	4.9	9 5.0		5.1	5.3	5.4	5.6	5.8	5.9	6.0	6.3	6.5	6.6
9,	5.9	6.0	6.3	6.4	4 6.5		9.9	6.8	1.0	7.2	7.4	9.7	ĽL	7.9	8.2	8.4
6	6.8	7.0	7.2	7.5	5 7.6		T.T	7.9	8.1	8.3	8.5	8.7	8.8	9.1	9.4	9.6
12	7.5	7.7	8.0	8.3	3 8.5		8.6	8.8	(8.6) 9.0	9.2	9.3	9.5	9.6	10.0	10.3	10.5
18	8.6	8.8	9.1	9.7	7 9.8	10.0		10.1	10.4	10.6	10.7	10.9	11.0	11.5	11.9	12.2
24	.4	9.7	10.1.	10.7	7 10.9	1.11		11.4	(10.8) 11.6	11.8	12.0	12.2	12.3	12.9	13.3	13.7
30	10.1	10.4	10.9	11.6	6 11.8	12.0		12.3	12.6	12.9	13.1	13.3	13.5	14.2	14.8	15.2
36	10.8	1.11	11.6	12.3	3 12.4		12.8	13.1	(9.cr) 13.5	13.9	14.1	14.4	14.6	15.3	16.0	16.7
42	11.3	11.7	12.2	12.9	9 13.2		13.5	13.9	(14.1) 14.3	14.8	15.0	15.4	15.7	16.4	17.1	18.0
48	11.9	12.3	12.9	13.6	6 13.9	κ.	14.2	14.6	(1.cl) 15.1	15.6	16.0	16.4	16.7	17.5	18.2	19.4
54	12.6	13.0	13.6	14.3	3 14.6		14.9	15.4	15.9	16.5	16.9	17.3	17.7	18.5	19.3	20.6
09	13.4	13.9	14.5	15.1	1 15.5		15.7	16.2	(10.0) 16.8	17.4	17.8	18.3	18.6	19.6	20.2	21.9
99	14.4	14.9	15.6	16.1	1 16.5		16.8	17.2	(1/./) 17.8 19.6)	18.3	18.9	19.3	19.6	20.6	21.1	23.1
72	15.7	16.3	17.0	17.5	5 17.8		18.0	18.3	(19.5) (19.5)	19.3	20.0	20.3	20.5	21.7	22.0	24.3

VOLUME 31-APRIL 1994

Age	Ludhi	ana	Varana	asi	Calcu	tta	Dell	hi	Bangal	ore
(mo)	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Bi	3.15	0.03	3.14	0.04	3.15	0.04	3.26	0.08	3.05	0.10
3	5.75	0.05	5.74	0.08	5.62	0.06	6.23	0.08	5.88	0.13
6	6.72	0.05	7.17	0.07	7.17	0.07	7.64	0.10	7.29	0.23
9	8.21	0.04	8.37	0.09	8.37	0.07	8.82	0.10	8.46	0.27
12	9.57	0.04	9.40	0.10	9.38	0.13	9:79	0.13	9.15	0.23
18	10.87	0.08	10.56	0.18	11.27	0.07	11.12	0.32	10.80	0.38
24	11.79	0.06	11.68	0.17	12.46	0.06	12.57	0.30	12.15	0.38
30	12.89	0.06	12.88	0.15	12.54	0.19	13.16	0.20	12.80	0.19
36	13.89	0.07	13.88	0.15	13.66	0.19	13.82	0.19	13.50	0.10
42	14.88	0.11	14.83	0.16	14.54	0.17	14.65	0.16	14.41	0.15
48	16.03	0.11	15.48	0.16	15.58	0.16	15.59	0.16	15.14	0.1
54	17.00	0.11	16.47	0.16	16.63	0.19	16.78	0.19	15.97	0.18
60	18.04	0.15	17.60	0.17	17.70	0.20	17.73	0.20	17.09	0.20
66	18.96	0.13	18.94	0.22	18.63	0.20	19.17	0.26	17.78	0.1
72	19.85	0.16	20.35	0.33	19.93	0.25	_	_	-	_

 TABLE XII-Centrewise Mean and SE of Boys Weight (kg) for Age Estimated from Mixed Longitudinal

 Series

centres are also given in Tables XXII and XXIII. Ludhiana children show more gain and remain higher as compared to other centres. Chest overtook head circumference by 11.4 and 12.0 months in boys and girls, respectively. The earliest take over was observed in Delhi children by 9.24 and 9.85 months for boys and girls, respectively (Table XXII). At all age points upto 66 months the 50th percentile values for chest circumference were higher in boys as compared to girls, except for the value at 72 months where both boys and girls had similar 50th percentile value. The increments for chest circumference in case of boys were higher, upto 36 months of age; thereafter, the girls had marginally higher increments.

The total gain (median) in chest circumference from birth to 72 months of age for boys and girls was 23.3 and 23.0 cm, respectively.

Midarm Circumference

The percentiles are presented in *Tables XXV* and *XXVI* for boys and girls. The 50th centile values for boys and girls were similar; only marginal difference was noted at 3rd and 97th centiles. The means with SE for various centres are presented in *Tables XXVII* and *XXVIII*. The means were higher for Ludhiana as compared to other centres.

In velocity, the maximum increment appeared to be in the first 9 months of life which was marginally higher for boys than

Age	Ludhi	ana	Varana	asi	Calcu	tta	Dell	ni	Bangal	ore
(mo)	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Bi	3.11	0.03	3.16	0.05	3.12	0.04	3.15	0.06	3.09	0.15
3	5.45	0.07	\$.53	0.10	5.51	0.06	5.86	0.07	5.46	0.11
6	6.30	0.06	6.97	0.08	7.18	0.07	7.31	0.10	6.80	0.12
9	7.61	0.05	8.13	0.09	8.26	0.07	8:48	0.11	7.86	0.15
12	8.91	0.06	9.15	0.12	9.20	0.07	9.43	0.11	8.85	0.19
18	10.63	0.08	10.43	0.14	10.78	0.07	11.11	0.42	9.60	0.35
24	11.68	0.08	11.30	0.15	11.45	0.05	12.13	0.39	11.31	0.42
30	12.73	0.06	12.27	0.15	- 12.20	0.16	12.82	0.21	11.94	0.29
36	13.79	0.07	13.27	0.14	13.47	0.20	13.38	0.19	12.99	0.22
42	14.84	0.09	14.24	0.15	14.61	0.19	14.12	0.17	13.52	0.18
48	15.94	0.10	15.12	0.15	15.52	0.21	15.32	0.19	14.38	0.19
54	17.01	0.11	16.24	0.15	16.54	0.21	16.48	0.22	15.34	0.21
60	17.99	0.14	17.02	0.17	17.27	0.20	17.61	0.26	16.38	0.28
66	18.92	0.18	18.08	0.16	17.66	0.13	18.50	0.31	17.27	0.39
72	19.71	0.17	18.94	0.23	18.69	0.14				

 TABLE XIII-Centrewise Mean and SE of Girls Weight (kg) for Age Estimated from Mixed

 Longitudinal Series

Bi=Birth; ST = Standard error.

girls. Thereafter, the increments were small and similar upto 66 months of age *(Tables XXIX* and *XXX)*.

Discussion

Habicht *et al.* (12) stated that there are small differences 3% for height and 6% for weight in different ethnic groups with similar socio-economic status. In contrast, the varying socio-economic status can have higher difference (12% for height and 30% for weight). Therefore, these workers recommended that both genetic and ecologic background as well as their mutual interaction be taken into account in the construction of growth references. Similarly, Goldstein and Tanner(13), Tanner(14) have argued for local standards, which need to be updated from time to time to account for changing socio-economic level. The use of western standards set unattainable goal and overestimate degree of under nutrition among children. The same could be avoid-. ed by using local attainable as standards(15-19). Vanloon et al.(20) working in 4 different geographical areas showed that growth curves had heterogeneity as well as the values had varying differences as compared to the NCHS standard for individual age points. Presently in India, growth charts/ road to health cards/child health card/ weight for age charts in practice are

4.

						•	Percentile	intile							
Age at end of interval	3rd	Sth	10th	20th	25th	30th	40th	50th	60th	70th	75th	80th	90th	95th	97th
9	2.35	2.59	2.91	3,34	3.53	3.71	4.03	4.28	4.52	4.76	4.88	5.03	5.59	3.91	3.98
. 6	66.0	1.18	1.50	2.01	2.21	2.35	2.62	2.85	3.08	3.29	3.40	3.58	4.15	4.46	4.58
2	0.67	76.0	1.23	1.64	1.82	1.96	2.19	2.39	2.59	2.78	2.89	3.06	3.59	3.93	4.07
80	0.61	89.0	0.87	1.02	1.09	1.15	1.28	1.38	1.46	1.55	1.50	1.64	1.81	3.00	2.07
24	0.19	0.32	0.61	0.74	0.81	0.87	1.01	1.14	1.30	1.17	1.53	1.65	1.92	2.29	2.65
30	0.13	0.21	0.42	0.67	0.73	0.79	0.91	1.03	, 1915	1.35	1.49	1.62	2.04	3.41	3.02
36	0.17	0.28	0.57	0.66	0.74	0.81	0.95	1.09	1.22	1.35	1.42	1.48	1.84	1.89	3.62
42	0:30	0.49	0.57	0.70	0.76	0.84	0.96	1.11	1.26	1.41	1.48	1.63	3.96	2.36	3.64
48	0.16	0.27	0.51	0.67	0.75	0.83	0.99	1.12	1.24	1.37	1.43	1.50	3.52	3.14	3.61
54	0.16	0.26	0.51	0.71	0.81	0.91	1.10	1.22	1.35	1.49	1.64	1.80	3.24	3.78	3.24
09	0.20	0.33	0.54	0.69	0.76	0.84	0.98	1.14	1.30	1.46	3.70	3.70	3.26	3.73	3.18
99	0.16	0.26	0.51	0.63	0.70	0.76	0.89	1:03	1.24	1.46	3.65	3.88	3.34	3.83	3.15
72	0.26	0.41	0.51	0.71	0.81	0.86	76.0	1.07	1.18	1.39	1.51	1.71	2.20	2.34	2.40

Age at							Percentile	ntile							
end of interval	3rd	Sth	10th	20th	25th	30th	40th	50th	60th	70th	75th	80th	90th	95th	97th
	1.18	1.33	1.76	2.58	2.98	3.16	3.48	3.80	4.14	4.45	4.61	4.77	5.37	6.24	6.58
•	0.23	0.38	0.77	1.38	1.67	1.86	2.19	2.51	2.81	3.12	3.26	3.42	4.39	5.01	5.26
6	0.21	0.36	0.70	1.18	1.34	1.50	1.82	2.13	2.40	2.68	2.81	2.96	3.79	4.21	4.39
80	0.45	0.48	0.56	0.73	0.81	0.88	1.03	1.18	1.29	1.40	1.45	1.51	2.10	2.50	2.62
24	0.49	0.55	0.69	0.85	0.89	0.93	1.01	1.09	1.19 *	1.30	1.39	1.49	1.82	2.27	2.50
30	0.20	0.33	0.47	0.63	0.72	0.80	0.91	1.02	1.13	Ì.26	1.35	1.43	1.59	1.99	2.30
36	0.22	0.37	0.51	0.74	0.82	0.87	0.96	1.05	1.14	1.26	1.36	1.46	1.99	2.31	2.47
42	0.14	0.24	0.47	0.65	0.73	0.81	0.96	1.10	1.22	1.35	1.41	1.47	1.90	2.39	2.63
48	0.40	0.52	09.0	0.76	0.84	0.92	1.07	1.20	1.33	1.47	1.58	1.75	2.15	2.46	3.02
54	0.14	0.23	0.47	0.69	0.79	06.0	1.07	1.20	1.33	1.46	1.56	1.71	2.05	2.40	2.68
60	0.12	0.21	0.41	0.62	0.70	0.77	0.92	1.10	1.29	1.49	1.67	1.86	2.33	2.82	3.13
99	0.28	0.47	0.57	0.71	0.79	0.86	1.00	1.15	1.30	1.45	1.55	1.70	2.00	2.40	2.77
72	0.35	0.42	0.50	0.66	0.73	0.81	0.91	1.02	1.12	1.28	1.43	1.57	1.95	2.44	2.85

TABLE XV-Velocity (6 Monthily Increment) Percentile of Weight kg (Girls)

VOLUME 31-APRIL 1994

	.)			ĩ			. Perc	Percentile							
Age (mo)	3rd	Sth	10th	20th	25th	30th	40th	50th	60th	70th	75th	80th	90th	95th	97th
Bi	33.2	33.4	34.1	34.1	34.2	34.3	34.5	34.8 (34.8)	34.9	35.1	35.4	35.5	36.0	36.5	36.7
3	38.0	38.2	38.6	39.1	39.2	39.4	39.6	39.8 (40.6)	39.9	40.1	40.4	40.6	41.0	41.5	41.9
9	40.8	41.1	41.3	42.1	42.2	42.4	42.6	42.8	42.9	43.2	43.4	43.6	44.0	44.4	44.9
6	42.4	42.7	43.0	43.7	43.8	44.0	44.2	44.4 (45.8)	44.6	44.9	45.1	45.2	45.6	46.1	46.5
12	43.3	43.6	44.0	44.6	44.7	44.8	45.1	45.3 (47.0)	45.6	45.9	46.0	46.1	46.5	47.0	47.4
18	44.6	44.9	45.4	45.8	45.9	46.0	46.4	46.6 (48.4)	47.0	47.3	- 47.4	47.4	47.9	48.3	48.7
24	45.5	45.8	46.4	46.8	46.9	46.9	47.3	47.6 (49.2)	48.0	48.4	48.4	48.4	48.8	49.4	49.7
30	46.2	46.4	47.0	47.4	47.5	47.6	48.1	48.4 (49.9)	48.8	49.2	49.2	49.3	49.7	50.2	50.5
36	46.6	46.9	47.4	47.9	48.0	48.2	48.6	49.0	49.3	49.7	49.8	49.9	50.4	50.8	51.1
42	46.9	47.2	47.7	48.2	48.4	48.6	49.0	49.4	49.7	50.1	50.2	50.4	50.9	51.4	51.6
	47.0	47.4	47.8	48.5	48.6	48.9	48.3	49.7	50.0	50.4	50.6	50.8	51.4	51.8	52.1
54	47.2	47.5	47.9	48.7	48.9	49.1	49.6	50.0	50.3	50.7	50.9	51.1	51.8	52.3	52.6
	47.4	47.7	48.1	48.9	49.1	49.4	49.9	50.3	50.6	51.0	51.3	51.5	52.2	52.8	53.1
	47.6	48.1	48.5	49.2	49.5	49.8	50.3	50.7	51.0	51.4	51.7	52.0	52.8	53.5	53.8
12	48.1	48.5	49.2	49.7	49.9	50.2	50.9	51.2	51.6	52.0	52.4	52.5	53.5	54.3	54.6

Ą

ø

GROWTH IN AFFLUENT PRESCHOOLERS

							Perce	Percentile							
Age (mo)	3rd	Sth	10th	20th	25th	30th	40th	S0th	60th	70th	75th	80th	90th	95th	97th
Bi	33.0	33.1	33.5	33.9	34.1	34.2	34.4	34.6 (34.3)	34.9	35.1	35.3	35.4	35.7	36.1	36.5
3	37.6	37.9	38.4	38.9	39.0	39.1	39.3	39.5 (39.5)	39.7	39.9	40.1	40.3	40.6	41.0	41.1
9	40.3	40.7	41.2	41.8	41.9	42.1	42.3	42.4 (42.4)	42.6	42.9	43.0	43.2	43.6	43.9	44.0
6	41.8	42.2	42.8	43.3	43.5	43.7	43.9	44.1 (44.3)	44.3	44.5	44.6	44.8	45.2	45.5	45.6
12	42.7	43.0	43.6	44.1	44.3	44.5	44.7	45.0 (45.6)	45.2	45.4	45.5	45.6	46.1	46.4	46.5
18	43.8	44.2	44.7	45.2	45.5	45.7	46.0	46.2 (47.1)	46.5	46.7	46.8	46.9	47.7	47.8	48.0
24	44.6	45.0	45.5	46.0	46.4	46.5	46.8	47.2 (48.1)	47.5	47.7	47.8	47.9	48.5	48.9	49.1
30	45.2	45.6	46.0	46.6	46.9	47.1	49.4	47.8 (48.8)	48.1	48.4	48.6	48.7	49.1	49.8	50.0
36	45.6	46.0	46.4	47.0	47.3	47.5	47.9	48.2 (49.3)	48.5	48.9	49.1	49.3	50.0	50.4	50.8
42	45.8	46.2	46.6	47.3	47.5	47.8	48.1	48.5	48.9	49.3	49.6	49.8	50.5	51.0	51
48	46.0	46.5	46.9	. 47.6	47.7	48.0	48.4	48.7	49.1	49.7	50.0	50.2	50.9	51.5	51
54	46.2	46.7	47.1	47.8	47.9	48.3	48.6	49.1	49.5	50.0	50.4	50.6	51.4	52.0	52.5
99	46.5	47.0	47.4	48.1	48.3	48.6	49.0	49.5	50.0	50.5	50.8	51.1	51.8	52.6	23
99	47.0	47.4	47.8	48.6	48.8	49.1	49.6	50.2	50.7	51.1	51.4	51.6	52.4	53.3	53
72	47.8	47.9	48.4	49.1	49.6	49.8	50.4	51.2	51.7	51.9	52.1	523	53.0	54.1	54.6

VOLUME 31-APRIL 1994

Age	Ludhi	ana	Varana	asi	Calcu	tta	Dell	hi	Bangal	ore
	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean ·	SE
Bi	34.33	0.16	34.40	0.11	34.79	0.21	34.76	0.16	34.40	0.46
3	39.38	0.11	40.11	0.15	40.10	0.10	39.91	0.16	40.10	0.30
6	42.17	0.08	42.49	0.11	42.67	0.07	43.06	0.15	42.49	0.34
.9	43.67	0.06	43.95	0.09	44.53	0.06	44.79	0.16	44.20	0.39
12	44.89	0.06	45.39	0.11	45.97	0.22	45.86	0.16	45.42	0.52
18	46.89	0.13	46.74	0.14	48.32	0.08	47.16	0.74	46.94	0.20
24	47.52	0.10	47.48	0.13	48.32	0.06	48.43	0.19	47.83	0.22
30	48.29	0.08	48.03	0.11	48.35	0.13	48.73	0.16	48.43	0.18
36	49.02	0.08	48.41	0.11	48.84	0.12	49.14	0.14	48.69	0.22
42	49.78	0.08	48.77	0.11	49.10	0.11	49.43	0.11	48.84	0.13
48	50.45	0.08	49.21	0.12	49.36	0.11	49.93	0.12	49.15	0.13
54	51.05	0.09	49.56	0.13	49.53	0.10	50.39	0.13	49.45	0.1
60	51.53	0.10	49.88	0.14	49.77	0.10	50.73	0.14	49.77	0.1
66	52.40	0.12	50.08	0.15	49.83	0.10	51.32	0.26	49.99	0.1

 TABLE XVIII-Centrewise Mean and SE of Boys' Head Circumference in cm Estimated from Mixed

 Longitudinal Series

* Means estimated at the specified ages using observations made at that age as well as at all previous ages and at the immediately succeeding age.

basically derived from the growth charts designed showing upper line NCHS 50th centile of weight for boys, the lower line being 3rd centile for girls.

The present study meets the WHO criteria of selecting well nourished population, based on well defined sampling criteria in seven centres to cover various parts of the country. The anthropometric scales were similar and the staff was trained at Varanasi (coordinating centre). The difference has come up in the sample design, the present study is on cross linked design based on the method suggested by Rao and Rao(21). Thus, a well-nourished selected child nearing its birthday or its portion (3rd or 6th months) has been measured three times in a period of two years of study. This is an contrast to the selection of 200 children cross-sectionally for each age and sex point. However, as far as possible only one child has been selected from a family unit. In the present study, comparison of height data for individual centre and for combined pooled data of all the centres, the 50th centile at any age point showed a maximum of 3% variation. Thus, one is justified in presenting the growth percentiles for the data by pooling the observations from different regions of the country.

In view of the variation as compared to the NGHS and Europeans but proximity to

Age	Ludhi	ana	Varana	asi	Calcu	tta	Dell	hi	Bangal	ore
(mo)	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Bi	34.54	0.08	34.12	0.11	34.73	0.09	34.74	0.17	34.59	0.26
3	38.93	0.13	39.71	0.19	39.98	0.10	39.50	0.16	38.97	0.24
6	41.76	0.14	42.24	0.16	42.56	0.07	42.26	0.13	41.54	0.29
9	43.50	0.08	43.67	0.13	44.17	0.06	44.08	0.13	43.57	0.37
12	44.55	0.08	44.96	0.11	45.38	0.06	45.22	0.11	45.02	0.52
18	46.22	0.12	46.29	0.17	46.79	0.26	46.41	0.40	46.87	0.48
24	47.13	0.11	46.93	0.14	47.58	0.06	47.00	0.20	47.57	0.33
30	47.86	0.13	47.39	0.39	47.98	0.19	48.24	0.21	47.39	0.30
36	48.72	0.10	47.69	0.12	48.03	0.16	48.46	0.19	`47.54	0.19
42	49.44	0.13	48.02	0.11	48.45	0.15	48.87	0.15	47.91	0.15
48	50.43	0.11	48.31	0.14	48.59	0.18	49.43	0.17	48.12	0.13
54	50.96	0.10	48.02	0.12	49.01	0.13	49.84	0.17	48.45	0.14
60	51.36	0.11	49.02	0.12	49.10	0.15	50.19	0.17	48.83	0.13
66	52.20	0.11	49.30	0.14	49.19	0.19	50.45	0.19	49.01	0.19

 TABLE XIX-Centrewise Mean and SE of Girls Head Circumference in cm Estimated from Mixed

 Longitudinal Series

Asians, it would be more appropriate to use the Indian growth data as reference instead of the NCHS standard(22). This suggestion is further strengthened by the data collected for 6 monthly increments (the height velocity). As the velocity (increment) rate was lower during the study age period as compared to the increments reported-for American children by Baumgartner(23). In contrast, it can be argued that the differences observed particularly in case of Ludhi-ana (approaching close to the NCHS and other centres having significantly lower values) may indicate: (a) regional differences, (b) population having secular trend; and (c) changing social inputs.

The recent data from European countries show that boys in Netherlands, Denmark and Norway are taller than NCHS by around 2!7 cm at 72 months of age. The present Indian data remain lower by 2.5 cm at this age point as compared to NCHS. The height means for Indian, Hongkong and Thailand children are very similar but lower than the means observed for Chinese by 1.0 cm. The Japanese boy is shorter by 0.7 cm as compared to Indian and other Asians (*Table XXXI*).

The girls in Netherlands and Denmark are taller by 3.7 and 2.6 cm, respectively as compared to those from Spain and NCHS data. Indian girls are short by 1.0 cm at 72 mo of age; however remained close to NCHS during birth to 9 mo and 30 to 36 mo. The Chinese girls are taller by 1.0-1.5 cm but Japanese are short by 1.0 cm as compared

Age	3rd	Age 3rd 5th (mo)	10th	20th	25th	30th	40th	Soth	60th	70th	75th	80th	90th	95th	97th
3i	30.9	9 31.1	31.3	31.8	32.1	32.2	32.4	32.6	33.0	33.4	33.6	33.7	34.3	34.5	34.8
3	36.2	36.3		37.3	37.6	37.7	38.1	38.4	38.8	39.1	39.4	39.6	40.4	41.5	42.1
9	39.4	39.6	40.3	40.8	41.1	41.3	41.7	42.0	42.4	42.7	43.0	43.3	44.0	45.8	46.5
6	41.3	41.6	42.3	42.9	43.2	43.4	43.8	44.1	44.5	44.9	45.2	45.4	46.3	48.0	48.9
5	42.4		43.5	. 44.2	44.5	44.7	45.1	45.4	45.8	46.2	46.5	46.8	47.8	49.3	50.2
18	44.1		45.4	46.1	46.4	46.7	47.0	47.4	47.7	48.3	48.6	48.8	50.1	51.2	52.2
24	45.4		46.7	47.6	47.9	48.2	48.5	49.0	49.2	49.9	50.2	50.5	51.8	52.7	53.
30	46.3		47.7	48.7	48.9	49.3	49.7	50.2	50.4	51.1	51,4	51.7	53.1	53.9	55.0
36	47.0		48.5	49.4	49.7	50.1	50.5	51.1	51.3	52.0	52.3	52.6	54.1	54.9	55.9
42	47.5		49.0	49.9	50.3	50.7	51.2	51.8	52.1	52.8	53.1	53.4	54.7	55.7	56.
48	48.0		49.4	50.4	50.8	51.1	51.8	52.4	52.8	53.4	53.8	54.1	55.3	56.5	57.5
54	48.5		49.9	50.8	51.2	51.6	52.3	53.1	53.4	54.1	54.4	54.8	56.0	57.4	58.
60	49.2		50.5	51.3	51.8	52.2	53.0	53.8	54.2	54.9	55.2	55.6	56.7	58.3	59.1
66	50.1		51.2	52.1	52.6	53.0	53.9	54.7	55.1	55.8	56.2	56.6	57.7	59.4	60.2
22	51.4	51.9	52.3	53.2	53.6	54.2	55.0	55.9	56.1	57.1	57.4	57.9	59.2	60.8	61.6

TABLE XX-Percentile for Chest Circumference (cm) of Boys

AGARWAL & AGARWAL

GROWTH IN AFFLUENT PRESCHOOLERS

							Percentile								
Age (mo)	3rd	Sth	10th	20th	25th	30th	40th	50th	60th	70th	75th	80th	90th	95th	97th
Bi	30.3	30.6	31.1	31.5	31.7	32.0	32.2	32.4	32.6	33.0	33.3	33.5	34.0	34.4	34.8
3	35.7	36.1	36.6	37.0	37.2	37.3	37.7	38.0	38.3	38.7	39.0	39.2	40.0	40.7	41.3
9	38.9	39.4	39.9	40.4	40.7	40.7	41.2	41.6	41.8	42.3	42.5	42.7	43.6	44.6	45.2
6	40.8	41.3	41.8	42.5	42.7	42.8	43.4	43.7	43.9	44.3	44.6	44.8	45.7	46.7	47.4
12	41.8	42.3	43.0	43.7	44.0	44.2	44.7	45.0	45.2 *-	45.6	45.9	46.1	46.9	47.9	48.7
18	43.3	43.9	44.6	45.6	45.9	46.2	46.7	46.9	47.3	47.6	47.9	48.6	48.9	49.9	50.7
24	44.4	45.0	45.9	46.9	47.2	47.7	48.1	48.4	48.8	49.1	49.4	49.7	50.5	51.5	52.4
30	45.1	45.8	46.7	47.8	48.2	48.7	49.1	49.4	50.0	50.3	50.7	50.9	51.8	52.9	53.5
36	45.7	46.4	47.4	48.5	48.9	49.3	49.8	50.2	50.9	51.3	51.7	51.9	53.0	54.1	54.4
42	46.1	46.9	47.9	48.9	49.3	49.8	50.4	50.9	51.7	52.1	52.5	52.8	53.9	55.1	55.9
48	46.6	47.3	48.3	49.3	49.8	50.2	50.8	51.4	52.3	52.9	53.2	53.5	54.8	56.0	56.8
54	47.1	47.8	48.7	49.8	50.2	50.7	51.4	52.1	53.0	53.7	54.0	54.3	55.6	56.8	57.7
60	47.8	48.5	49.2	50.4	50.9	51.3	52.1	52.9	53.9	54.5	54.9	55.2	56.5	57.5	58.6
99	48.8	49.3	50.0	51.4	51.8	52.3	53.1	54.0	54.9	55.6	55.9	56.3	57.4	58.5	59.5
72	50.3	50.5	51.0	52.7	53.1	53.7	54.6	55.4	56.2	56.9	57.4	57.6	58.4	59.4	9.09

TABLE XXI-Percentile for Chest Circumference (cm) of Girls

VOLUME 31-APRIL 1994

Age	Ludi	niana	Vara	nasi	Calcu	itta	Dell	ni	Bangal	ore
(mo)	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Bi	32.75	[®] 0.08	32.04	0.15	32.16	0.06	33.19	0.18	32.86	0.29
3	38.18	0.13	38.42	0.21	38.32	0.13	40.69	0.20	39.30	0.44
6	41.18	0.11	41.23	0.16	41.47	0.10	44.22	0.23	41.33	0.56
9	43.22	0.10	43.01	0.18	44.23	0.06	46.98	0.22	43.67	0.59
12	45.04	0.08	45.22	0.53	45.75	0.06	48.49	0.26	45.34	0.43
18	48.23	0.21	47.48	0.28	48.03	0.15	48.74	0.47	48.70	0.70
24	49.04	0.15	48.75	0.25	52.02	0.96	50.57	0.49	49.20	0.93
30	50.14	0.15	49.55	0.21	50.19	0.27	51.22	0.42	49.45	0.42
36	51.26	0.10	50.54	0.20	50.99	0.25	52.14	0.32	49.90	0.18
42	52.42	0.09	50.81	0.23	51.83	0.23	52.62	0.26	51.03	0.24
48	53.46	0.08	51.46	0.19	52.56	0.22	53.68	- 0.29	51.55	0.22
54	54.11	0.07	52.19	0.20	53.41	0.27	54.21	0.29	52.21	0.22
60	55.18	0.10	52.97	0.22	54.76	0.31	54.93	0.26	53.10	0.20
66	56.32	0.13	53.85	0.28	55.15	0.32	55.88	0.32	53.43	0.3

 TABLE XXII-Centrewise Mean and SE of Boys Chest Circumference (cm) Estimated from Mixed

 Longitudinal Series

* Means estimated at the specified ages using observations made at that age as well as all previous ages and at the immediately succeeding age.

to the Indians (Table XXXI).

The 50th weight centile for boys upto 6 mo approached around 30-40th centile and between 20-30th centile for age 9-72 mo as compared to NCHS standards. For girls, the 50th centile of the present study is near 40-50th centile upto 6 mo and thereafter between 30-40th centile of NCHS standards. The European boys and girls from Norway, Poland, Netherland, Denmark and Italy weigh significantly higher than those in NCHS data. Similar weight means are observed for Asian boys and girls. Indians are lighter by 1.5 kg and 0.6-0.9 kg for boys and girls, respectively as compared to the NCHS data (*Table XXXII*). The comparative data for head and chest circumferences in *Table XXXIII* show that both parameters are smaller, in Indian children.

The velocity for weight and head circumference as in case of height in early years was lower in Indian children of the present study as compared to the American counterparts(23). The mid-arm circumference values are lower than those for European counterparts (*Table XXXIV*).

The height and weight data from Ludhi-ana, Delhi, Calcutta and Varanasi show that growth potential level observed in the present study continues in later life (6-18

Age	Ludh	iana	Vara	nasi	Calcu	tta	Dell	ni	Bangal	ore
(mo)	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Bi	32.71	0.10	[®] 31.66	0.13	32.02	0.06	33.28	0.20	32.40	0.37
3	37.64	0.16	38.00	0.21	38.35	0.13	40.10	0.20	38.15	0.30
6	40.75	0.17	40.87	0.18	41.28	0.10	43.16	0.21	40.17	0.31
9	42.99	0.15	42.56	0.15	43.85	0.07	45.84	0.25	42.41	0.43
12	44.69	0.13	44.44	0.16	45.54	0.14	47.45	0.22	44.77	0.55
18	47.39	0.14	46.76	0.23	47.07	0.18	48.69	1.40	48.03	1.01
24	48.83	0.14	47.35	0.24	48.32	0.15	49.60	0.97	48.66	0.61
30	50.03	0.15	48.34	0.21	49.77	0.21	51.03	0.63	48.75	0.45
36	51.29	0.14	49.36	0.22	50.70	0.23	51.25	0.40	49.00	0.26
42	52.48	0.13	49.85	0.19	51.83	0.24	51.74	0.30	49.68	0.22
48	53.31	0.11	50.47	0.21	52,77	0.27	53.21	0.34	50.31	0.23
54	54.12	0.08	51.35	0.21	53.69	0.28	53.56	0.31	51.34	0.25
60	54.04	0.13	51.73	0.23	54.52	0.30	54.26	0.32	52.08	0.33
66	56.32	0.17	52.51	0.24	55.09	0.21	\$5.26	0.53	52.72	0.40

 TABLE XXIII-Centrewise Mean and SE of Girls Chest Circumference (cm) Estimated from Mixed

 Longitudinal Series

* Means estimated at the specified ages using observations made at that age as well as all previous ages and at the immediately succeeding age.

yr of age)(36). Thus, it could be said that growth level attainable in India be used on pooled data or on regional basis to avoid overestimates of undernutrition. The need for continuous efforts to collect data for growth parameters on longitudinal (in adolescence) or cross sectional basis in a nation wide approach will ultimately provide an assessment measure for optimal growth potential.

Acknowledgements

We are grateful to Dr. C. Gopalan, Chairman Nutrition Foundation of India, New Delhi, for valuable guidance and financial support.

We are also indebted to Sv. Shri Raj Seth, Laxmi Kant, U.D. Sharma, and Ms Preeta Agarwal from the Computer Science Section and NNMB Unit for help.

mia,	
from Delhi, Ludhu thod	Pooled
ıkes HC in Children pearman-Karber) Me	Bangalore
) at which CC Overtunple Mathematical (S)	Calcutta
) with Standard Error (SE) at which CC Overtakes HC in Children from re according to Sex by Simple Mathematical (Spearman-Karber) Method	Varanasi
urs Estimate of Age (Months) with Standard Error (SE) at which CC Overtakes HC in Children from Delhi, Ludhani anasi, Calcutta and Bangalore according to Sex by Simple Mathematical (Spearman-Karber) Method	Ludhiana
ABLE XXIV-Means Estimat Varanasi, Calc	Delhi
TABI	

Delhi Ludhiana Varanasi Calcutta Bangalore Pooled	variante, var	urunasi, Catculia ana Dungalore a	iccording to sex by sit	inninemannai indu	She (130 mu-unumade	inou	
	Delhi	Ludhiana	Varanasi	Calcutta	Bangalore	Pooled	

1.676 1.735 1.146 エン 17.280 16.380 15.120 Mean 1.086 0.759 1.179 SE. 18.780 20.040 19.140 Mean 0.916 0.950 0.625 2 24.520 23.580 23.920 Mean 0.443 0.532 0.338 ン 10.680 11.210 11.090 Mean 1.865 0.950 1.123 NE 9.850 9.660 9.240 Mean Total -Female Male Sex

11.400 12.000

CC=Chest circumference; HC=Head circumference.

AGARWAL & AGARWAL

h

0

4.

GROWTH IN AFFLUENT PRESCHOOLERS

							Percentile	entile							
Age (mo)	3rd	Sth	10th	20th	25th	30th	40th	S0th	60th	70th	75th	80th	90th	95th	97th
Bi	8.9	8.9	9.1	9.3	7.4	9.5	7.6	9.8	9.9	10.2	10.3	10.4	10.7	11.2	11.3
3	10.0	10.1	10.4	10.8	11.1	12.1	11.9	12.3	12.5	12.8	12.9	13.0	13.4	13.9	14.2
9	10.8	11.0	11.4	11.9	12.2	12.4	13.1	13.7	14.0	14.2	14.4	14.5	14.9	15.4	15.7
6	11.4	11.6	12.1	12.6	12.9	13.1	13.8	14.3	14.6	14.8	15.1	15.2	15.6	16.1	16.4
12	11.9	12.1	12.7	13.1	13.4	13.5	14.0	14.5	14:8 *	15.0	15.3	15.5	15.9	16.3	16.6
18	12.6	13.0	13.5	13.9	14.0	14.2	14.4	14.8	15.1	15.3	15.6	15.9	16.2	16.7	17.0
24	13.2	13.5	14.1	14.4	14.5	14.6	14.7	15.0	15.3	15.6	15.9	16.1	16.5	17.0	17.2
30	13.6	13.9	14.4	14.7	14.8	14.9	15.0	15.2	15.5	15.8	16.1	16.3	16.8	17.3	17.5
36	13.9	14.2	14.5	14.8	14.9	15.1	15.2	15.4	15.7	16.0	16.2	16.5	17.1	17.5	17.8
42	14.0	14.3	14.6	14.9	15.0	15.2	15.4	15.6	15.9	16.2	16.4	16.7	17.4	17.7	18.1
48	14.1	14.3	14.6	14.9	15.1	15.3	15.6	15.8	16.0	16.4	16.6	16.8	17.6	18.0	18.4
54	14.2	14.3	14.6	15.0	15.2	15.4	15.8	16.0	16.3	16.6	16.8	17.0	17.8	18.2	18.7
09	14.2	14.4	14.7	15.1	15.4	15.5	16.0	16.2	16.5	16.9	17.0	17.2	18.0	18.5	19.0
99	14.3	14.4	14.9	15.8	15.6	15.8	16.2	16.5	16.9	17.2	17.4	17.5	18.2	18.9	19.4
72	14.4	14.6	15.4	15.7	16.0	16.1	16.5	16.7	17.3	17.5	17.8	18.0	18.4	19.4	19.8

VOLUME 31-APRIL 1994

TABLE XXVI-Percentiles for Mid-ann Circumference (cm) of Girls

.

6

18.8 18.9 97th 16.2 16.7 18.6 11.1 15.2 15.9 17.4 17.8 18.1 18.3 19.1 13.7 17.1 18.5 18.9 95th 13.6 14.9 17.6 17.8 18.0 18.3 11.2 15.6 16.0 16.5 16.9 17.2 17.4 17.0 17.5 17.9 18.2 16.7 90th 10.9 15.6 16.0 16.4 17.3 17.7 18.1 13.3 14.6 15.3 17.9 80th 16.6 16.8 17.0 17.2 17.5 14.8 15.6 15.9 10.5 12.8 14.2 15.1 16.2 16.4 16.6 16.8 17.4 17.7 75th 10.4 12.8 16.0 16.2 16.4 14.1 14.8 15.0 15.4 15.7 17.1 16.0 16.2 16.5 16.7 16.9 17.2 17.5 70th 14.9 15.5 15.8 12.6 14.0 14.7 10.1 15.2 15.9 16.6 16.8 17.2 60th 14.5 14.6 14.9 16.2 15.5 15.7 16.3 6.6 12.4 13.8 16.1 16.7 15.0 15.8 16.0 16.2 16.4 Soth 15.2 15.4 15.7 6.6 12.2 13.5 14.3 14.7 14.1 Percentile 40th 11.8 13.0 13.6 13.9 14.4 15.0 15.5 15.6 15.8 15.9 16.3 9.8 14.7 153 16.1 30th 15.8 14.8 15.2 15.3 15.5 15.6 11.3 12.5 12.9 13.4 14.0 14.5 15.1 16.1 9.7 25th 14.7 14.9 15.0 15.2 15.4 15.6 16.0 15.1 13.8 14.3 9.6 13.2 11.1 12.1 12.7 20th 14.5 14.7 14.8 14.9 15.0 15.4 15.8 10.8 11.7 12.4 12.9 13.7 14.2 15.1 9.4 14.5 14.6 14.6 14.8 14.3 14.7 10th 11.8 13.7 14.1 9.2 10.3 11.2 12.3 13.1 15.1 14.5 14.5 14.6 14.7 14.9 Sth 13.0 13.6 14.0 14.4 14.2 12.2 9.4 10.4 11.1 11.7 3rd 14.8 10.4 11.7 12.6 13.2 13.5 13.6 13.6 13.6 13.7 13.8 14.2 9.5 8.4 11.1 Age (mo) 72 09 99 9 6 12 18 24 30 36 42 48 54 Bi 3

404

· • · •

Age	Ludhi	ana	Varan	asi	Calcu	tta	Dell	hi	Bangal	ore
(mo)	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Bi	9.89	0.10	10.02	0.07	9.96	0.05	9.98	0.08	10.19	0.20
3	10.79	0.08	12.12	0.12	12.45	0.05	12.99	0.13	12.82	0.27
6	11.53	0.08	13.36	0.11	13.96	0.03	14.46	0.11	13.62	0.31
9	12.49	0.08	14.10	0.13	15.08	0.03	15.16	0.11	14.31	0.32
12	13.69	0.07	14.40	0.14	15.46	0.03	15.70	0.13	14.84	0.35
18	14.27	0.11	14.93	0.17	14.33	0.05	15.11	0.29	15.30	0.29
24	14.71	0.09	15.12	0.14	15.29	0.15	15.38	0.24	15.29	0.29
30	15.21	0.03	15.49	0.11	- 14.97	0.16	15.55	0.21	15.19	0.16
36	15.85	0.09	15.68	0.11	15.26	0.11	15.63	0.15	15.28	0.08
42	16.28	0.08	15.83	0.12	15.44	0.10	15.89	0.13	15.50	0.07
48	16.57	0.08	15.84	0.11	15.60	0.09	16.51	0.12	15.80	0.09
54	16.85	0.07	16.04	0.11	15.90	0.11	16.83	0.12	16.03	0.0
60	17.41	0.07	16.07	0.22	16.16	0.12	17.14	0.13	16.27	0.12

TABLE XXVII-Centrewise Mean and SE of Boys Midarm Circumference (cm) Estimated from Mixed

 Longitudinal Series

TABLE XXVIII-Centrewise Mean and SE of Girls Midarm Circumference (cm) Estimated from Mixed

 Longitudinal Series

Age	Ludhi	ana	Varan	asi	Calcu	tta	• Dell	hi	Bangalo	re
(mo)	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Bi	9.70	0.07	10.01	0.08	9.89	0.06	10.12	0.08	10.27	0.30
3	10.56	0.08	11.58	. 0.13	12.35	0.06	12.80	0.13	12.26	0.15
6	11.17	0.08	12.97	0.13	13.89	0.03	14.03	0.13	13.31	0.18
9	11.93	0.07	13.77	0.14	14.86	0.05	14.85	0.14	13.97	0.2
12	12.93	0.08	14.20	0.15	15.22	0.03	15.49	0.15	14.55	0.2
18	14.03	0.14	14.86	0.12	14.27	0.05	14.96	0.74	14.91	0.3
24	14.63	0.10	15.08	0.11	14.70	0.06	15.53	0.39	15.11	0.4
30	15.26	0.09	15.29	0.12	15.24	0.12	15.68	0.22	15.05	0.3
36	15.76	0.09	15.63	0.11	15.42	0.12	15.28	0.22	15.09	0.1
42	16.12	0.07	15.86	0.09	15.68	0.12	15.87	0.14	15.28	0.1
48	16.51	0.09	16.09	0.10	15.90	0.13	16.57	0.15	15.67	0.1
54	16.63	0.07	16.29	0.10	16.89	0.12	16.79	0.14	15.95	0.1
60	17.88	0.07	16.42	0.10	16.26	0.13	17.05	0.15	16.15	0.1

							Perce	Percentile				•			
Age at interval	3rd 1	Sth	10th	20th	25th	30th	40th	50th	60th	70th	75th	80th	90th	95th	97th
9	0.8	1.0	1.4	2.0	2.3	2.6	3.2	3.7	4.1	4.6	4.8	5.2	6.2	7.5	8.1
6	0.3	0.4	0.8	1.2	1.4	1.6	1.9	2.2	2.0	3.0	3.2	3.4	4.1	4.8	5.3
12	0.1	0.2	0.4	0.8	0.9	1.0	1.3	1.6	1.9	2.2	2.5	2.8	3.5	4.0	4.8
18	0.0	0.1	0.1	0.2	0.3	0.4	0.5	0.5	0.6	0.7	0.8	0.8	1.1	1.2	1.3
24	0.0	0.0	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.7	0.7	0.8	1.2	1.4
30	0.0	0.1	0.1	0.2	0.3	0.3	0.4	0.5		0.7	0.7	0.8	0.1	1.5	1.6
36	0.0	0.1	0.1	0.2	0.2	0.3	0.4	0.5	9.0	9.0	0.7	0.7	0.9	1.3	1.5
42	- 0.0	0.0	0.1	0.2	0.2	0.3	0.4	0.4	0.5	9.0	0.7	0.7	1.0	1.2	1.5
48	0.0	0.0	0.1	0.2	0.2	~ 0.2	0.3	0.4	0.5	0.7	0.7	0.8	1.1	1.2	1.4
54	0.0	0.0	0.1	0.2	0.2	0.2	0.3	0.4	0.5	9.0	0.7	0.7	1.0	1.1	1.2
60	0.0	0.0	0.1	0.2	0.2	0.2	0.3	0.4	0.5	0.7	0.7	0.8	1.0	1.2	1.4
99	0.0	0.0	0.1	0.2	0.2	0.3	0.3	0.4	0.5	0.5	0.6	9.0	1.0	1.2	1.3
72	0.0	0.0	0.1	0.2	0.2	0.2	0.3	0.4	0.5	0.5	0.6	0.7	0.9	1.1	1.1
			/												

TABLE XXIX-Velocity (6 Monthly Increment) Percentile of Mid-ann Circumfernece (cm) of Boys

ā,

8

GROWTH IN AFFLUENT PRESCHOOLERS

×

×

							Percentile	ntile							
Age at interval		3rd 5th	10th	20th	25th	30th	40th	S0th	60th	70th	75th	80th	90th	95th	97th
9	0.6	0.7	1.1	1.7	2.0	2.2	2.7	3.2	3.7	4.2	4.5	4.7	5.6	6.3	6.8
6	0.2	0.3	0.5	1.0	1.1	1.3	1.6	1.8	2.2	2.6	2.9	3.1	3.7	4.4	4.9
12	0.1	0.2	0.3	9.0	0.8	0.9	1.2	1.5	1.7	2.0	2.2	2.5	3.0	3.0	4.3
18	0.0	0.1	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.8	0.9	1.1	1.2	1.3
24	0.0	0.0	0.1	0.2	0.2	0.3	0.4 ,	0.4	0.5	0.6	0.7	0.7	0.8	1.0	1.1
30	0.0	0.1	0.1	0.2	0.3	03	0.4	0.5	9.0	0.7	0.7	0.8	1.0	1.1	1.2
36	0.0	0.1	0.1	0.2	0.3	0.3	0.4	0.4	0.5	0.5	0.6	9.0	0.8	0.9	1.1
42	0.0	0.1	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.5	0.7	1.3	1.6	1.7
48	0.0	0.0	0.1	0.2	0.2	0.2	0.3	0.4	0.5	9.0	0.7	0.8	1.5	2.3	2.9
54	0.0	0.0	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.4	0.4	0.4	1.0	1.6	1.7
60	0.0	0.0	0.1	0.2	0.2	0.2	0.3	0.4	0.5	0.5	9.0	0.7	1.1	1.4	1.7
99	0.0	0.0	0.1	0.2	0.2	0.2	0.3	0.4	0.5	0.5	9.0	0.7	1.1	1.4	1.7
72	0.0	0.0	0.1	0.2	0.2	0.3	0.3	0.4	0.5	0.5	9.0	9.0	0.8	0.9	1.0

VOLUME 31-APRIL 1994

		A 114							Age	Age (months)				- 9	20
Country	riace	Autor/ I car		Bi .	0	3	9	6	12	18	24	36	48	60	72
			European	-							101				
Belgium	Brussels	Vercauteren 1984 (24)	Median	a D									102.5 101.0	109.5 109.0	116.1 115.0
Denmark	National	Andersen et al. 1982 (25)	Mean	ВŪ					78.0 78.0		88.5 87.1	97.2 96.5	104.7 103.5	111.2	118.8
Hungary	National	Eiben & Panto 1986 (26)	Mean	G B								97.5 97.2	103.0 102.0	109.3 109.0	116.2 116.0
Netherlands	National	Roede & Van Weiringen 1985 (27)	Mean	щŪ					76.4 74.8		88.6 87.7	98.2 97.0	105.7 104.8	112.4 111.9	118.8
Norway	Bergen	Waaler 1983 (28)	Mean	G B								99.4 97.3	105.8	112.4	118.7 117.3
Poland	Warsaw	Kurniewicz- Witczakowa et al. 1983 (29)	Mean	G B	2			ŧ,	77.2 77.5		86.5 85.2	95.5 94.9	103.8 103.0	110.0	117.8
Spain	Bilbao	Hernandez et al. 1985 (30)	Median	G B	5				73.0 73.3		86.7 85.4	95.2 94.1	102.5	108.7	114.1 114.0
NCHS	NSA	Hamill et al. 1977 (6)	Median	G B	50.5 49.1	61.1 58.9	· 67.8 65.3	72.3 69.4	76.1	82.4	87.6 85.4	94.9	102.9	109.9 108.9	116.1 114.0
			Asian												
China (PRC)	Urban	Zhang & Huang 1988 (31, 32) Zhang 1977	Mean	B G					76.5 75.1		87.9 86.6	95.1 94.2	102.1 101.2	108.6 107.6	114.7 113.9
Hong Kong	Chinese	Leung et al. 1987 (33)	Mean	G B									101.1 100.6	107.6 106.8	113.8 113.0
Japan	National	Kikuta & Takaishi 1987 (34)	Mean	G B							85.0 85.0	92.0 92.0	99.0 97.0	106.0	113.0
Thailand	Bangkok	Khanjanasthti et al. (35)	Median	G B					74.9 72.8		86.3 85.0	95.6 94.6	102.8 101.3	108.0	113.8
Present Study	*		Median	G B	50.4	59.4	65.9 65.5	70.6	74.3 73.5		86.0 79.8	94.4 93.3	100.8 99.8	106.7	113.6

GROWTH IN AFFLUENT PRESCHOOLERS

408

ή

ð

ų,

Autory rear Bi 3 6 9 12 18 2 Vercauteren 1985 (24) Median B European European European 100		ra.										Age (months)	onths)						
EuropeanBruselsVercauteren 1985 (24)Median B κ NationalAndersen et al. 1982 (25)MeanB κ NationalAndersen et al. 1982 (25)MeanB κ NationalElben & Panto 1988 (23)MeanB κ NationalReede & VanMedian B9.3 κ NationalReede & VanMedian B9.3 κ Vorteringen 1988 (23)Median B9.39.3 κ Vorteringen 1988 (23)Median B9.39.3 κ Vorteringen 1988 (23)Median B9.39.3 κ VanxawKundizon et al. 1989 (23)Median B9.39.3 κ VanxawKurniewicz-Witzakowa 1983MeanB9.39.3 κ VanxawKurniewicz-Witzakowa 1983MeanB3.36.07.89.9 κ VanxawKurniewicz-Witzakowa 1983MeanB3.36.07.89.9 κ VanxawKurniewicz-Witzakowa 1983MeanB3.36.07.89.9 κ VanxawKurniewicz-Witzakowa 1983MeanB3.36.07.89.99.9 κ VanxawKurniewicz-Witzakowa 1983MeanB3.36.07.89.99.9 κ VanxawKurniewicz-Witzakowa 1983MeanB3.36.07.89.99.9 κ VanxawKurniewicz-Witzakowa 1983MeanB<	ountry	Place	Author/ Y car		Bi		3	9					30	36	42	48 5	54 6	9 09	99
	,				Europe	BU													
k National Andersen et al. 1982 (25) Mean B 7.6 9.1 102 inds National Eiben & Panto 1986 (26) Mean B 9.5 9.5 101 inds National Eiben & Panto 1986 (25) Mean B 9.5 9.5 inds Oosterwolde Gerver, 1988 (23) Median B 9.5 9.5 9.5 Bergen Knudizon et al. 1989 (23) Median B 9.5 9.7 9.7 Bergen Waaler 1983 (28) Mean B 9.5 9.7 9.7 Bergen Waaler 1983 (28) Mean B 9.5 9.7 9.7 Bergen Waaler 1983 (28) Mean B 9.5 9.7 9.7 Bergen Waaler 1983 (28) Mean B 9.2 9.7 9.7 Bergen Waaler 1983 (28) Mean B 3.3 6.0 7.8 9.9 Bibbo Hermadez et al. 1987 (50) Mean B	kelgium	Brussels	Vercauteren 1985 (24)	Median	a G													16.5	19.0 21.0 19.0 21.0
National Eiben & Panto 1986 (26) Mean B 101 inds Vational Reode & Van Mean B 95 inds Vational Reode & Van Mean B 95 inds Oosterwolde Gerver, 1988 (23) Median B 95 95 Bergen Knutzon et al. 1989 (23) Median B 97 97 Bergen Waaler 1983 (28) Mean B 97 97 Warsaw Kurniewicz-Witzakowa 1983 Mean B 97 97 Bilbao Hernandez et al. 1985 (30) Meain B 3.3 6.0 7.8 95 103 USA Hamilt et al. 1977 (6) Median B 3.3 6.0 7.8 95 103 UISA Hamilt et al. 1977 (6) Median B 3.3 6.0 7.8 95 103 USA Hamilt et al. 1977 (6) Median B 3.3 5.4 7.2 8.6 95 103 USA Hamilt et al. 1977 (6) Me	Denmark	National	Andersen et al. 1982 (25)	Mean	a u		5.8	7.6		10.9		13.4		15.4 14.9		17.4		19.3	21.4
Index Rational Weiringen 1985 (27) Mean B Image Image B Image Image <t< td=""><td>Jungary</td><td>National</td><td>Eiben & Panto 1986 (26)</td><td>Mean</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>15.0</td><td></td><td>16.1</td><td></td><td>18.0</td><td>20.5</td></t<>	Jungary	National	Eiben & Panto 1986 (26)	Mean										15.0		16.1		18.0	20.5
nds Oosterwolde Gerver, 1988 (23) Median B 9.6 9.6 Bergen Knudtzon <i>et al.</i> 1989 (23) Median B 9.5 9.5 Bergen Knudtzon <i>et al.</i> 1989 (23) Median B 9.5 9.5 Bergen Waaler 1983 (28) Mean B 9.5 9.5 Warsaw Kurniewicz-Witzakowa 1983 Mean B 9.5 9.9 Bilbao Hermandez <i>et al.</i> 1985 (30) Median B 3.3 6.0 7.8 9.9 USA Hamill <i>et al.</i> 1977 (6) Median B 3.3 6.0 7.8 9.2 9.6 USA Hamill <i>et al.</i> 1977 (6) Median B 3.3 6.0 7.8 9.2 9.6 Urban Zhang 1977 (31, 33) Mean B 3.3 6.0 7.8 9.2 9.2 Ong Chinase Lewag et al. 1987 (31, 33) Mean B 9.2 9.2 9.2 Ong Chinase Lewag et al. 1987 (31, 33) Meain B 7.4 8.5 9.2 On	Vetherlands	National	Roede & Van Weiringen 1985 (27)	Mean	с в					10.1		13.1		15.4		17.6 17.2		19.6 19.3	21.7 21.4
	Vetherlands	Oosterwold	le Gerver, 1988 (23)	Median	80						×.,	13.1 12.6		15.3 14.8		17.5		19.7	21.9
Bergen Waaler 1983 (28) Mean B G G P </td <td>Vorway</td> <td>Bergen</td> <td>Knudtzon et al. 1989 (23)</td> <td>Median</td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td>10.3</td> <td></td> <td>13.0</td> <td></td> <td></td> <td></td> <td>17.0 16.7</td> <td></td> <td></td> <td></td>	Vorway	Bergen	Knudtzon et al. 1989 (23)	Median			~			10.3		13.0				17.0 16.7			
	Vorway	Bergen	Waaler 1983 (28)	Mean	G G									16.1 15.1		17.6		19.8	21.9 21.0
Bilbao Hernandez et al. 1985 (30) Median B 3.3 6.0 7.8 9.6 9.6 USA Hamill et al. 1977 (6) Median B 3.3 6.0 7.8 9.2 10.1 USA Hamill et al. 1977 (6) Median B 3.3 6.0 7.8 9.2 10.2 11.5 Urban Zhang & Huang 1988 Mean B 3.2 5.4 7.2 8.6 9.5 10.8 Urban Zhang & Huang 1988 Mean B 9.2 9.2 9.2 9.2 9.2 0.8 Kinta Zhang (977 (31, 32)) Mean B 9.2	oland	Warsaw	Kurniewicz-Witzakowa 1983 et al. (29)	Mean	a D					10.7 9.9		13.0		14.8 14.5		16.9 16.4		19.2	21.8 20.9
USA Hamilt et al. 1977 (6) Median B 33 6.0 7.8 9.2 10.2 11.5 G 3.2 5.4 7.2 8.6 9.5 10.8 Urban Zhang 1977 (31, 32) Mean B 2 9.2 10.2 11.5 Urban Zhang 1977 (31, 32) Mean B 2 9.2 9.2 9.2 9.2 Cong Chinese Leung 1988 Mean B 2 9.2 9.2 9.2 Kituta Zhang 1977 (31, 32) Mean B 2 9.2 9.2 9.2 Kituta & Takaishi 1987 (33) Mealian B 6 3 2 9.2 9.2 Mational Kikuta & Takaishi 1987 (34) Mean B 3.1 5.7 9.2 Mational Bangkok Khanjanashtit <i>et al.</i> (35) Median B 3.1 5.7 9.6 Mational Study Median B 3.1 5.7 7.4 8.5 9.3	Spain	Bilbao	Hernandez et al. 1985 (30)	Median	G B					10.1 9.6		12.7		14.9 14.5		17.0 16.7		18.8	20.9
Asian Asian Urban Zhang & Huang 1988 Mean B 9.9 Zubang 1977 (31, 32) G 9.2 Kong Chinese Leung et al. 1987 (33) Median B Konal Kikuta & Takaishi 1987 (34) Mean B National Kikuta & Takaishi 1987 (34) Mean B nd Bangkok Khanjanasthti et al. (35) Median B 9.6 nt Study Median B 3.1 5.7 7.4 8.5	NCHS	NSA	Hamill et al. 1977 (6)	Median		3.3	6.0 5.4	7.8 7.2	9.2 8.6		11.5	12.6	13.5	14.6 14.1	15.7 15.1	16.7	17.7 16.8	18.7	19.7 20.7 18.6 19.5
Urban Zhang & Huang 1988 Mean B 9.9 Zhang 1977 (31, 32) G 9.2 9.2 Kong Chinese Leung et al. 1987 (33) Median B 9.2 Kong Chinese Leung et al. 1987 (33) Median B 9.2 National Kikuta & Takaishi 1987 (34) Mean B 9.6 nd Bangkok Khanjanasthti et al. (35) Median 9.6 9.1 at Study Anajanasthti et al. (35) Median B 3.1 5.7 7.4 8.5 9.3					Asian														
Kong Chinese Leung et al. 1987 (33) Median B National Kikuta & Takaishi 1987 (34) Mean B National Kikuta & Takaishi 1987 (34) Mean B nd Bangkok Khanjanasthti et al. (35) Median B t Study Median B 3.1 5.7 7.4 8.5 c 2.3 5.4 7.0 8.1 9.6	China PRC)	Urban	Zhang & Huang 1988 Zhang 1977 (31, 32)	Mean	GB					9.9 9.2		12.2		14.0 13.4		15.6 15.2		17.4 16.8	19.2
National Kikuta & Takaishi 1987 (34) Mean B G G 9.6 nd Bangkok Khanjanasthti et al. (35) Median B G G 9.1 t Study Median B 3.1 C 2.3 5.4 7.4	Hong Kong	Chinese	Leung et al. 1987 (33)	Median												15.2 14.8		16.9 16.4	18.7
Bangkok Khanjanasthti et al. (35) Median B G Median B 3.1 5.7 7.4 8.5 9.3 C 3.2 5.4 7.0 81 0.0	Japan	National	Kikuta & Takaishi 1987 (34)	Mean	G B							13.0		14.0 14.0		15.0		17.5	20.0
Median B 3.1 5.7 7.4 8.5 9.3	Thailand	Bangkok	Khanjanasthti et al. (35)	Median	G B					9.6 9.1		12.3		14.6 14.0		16.1		17.2 17.6	19.9
N'C T'O N'I L'C 7'C	Present Study			Median	G B	3.1	5.7	7.4	8.5 8.1	9.0		11.9		13.8		15.4		17.1 16.8	19.2

VOLUME 31-APRIL 1994

		54 60 66 72						
		48 5						
		42 4						
иа	(s	36 4						
hildr	nonth							
an C	Age (months)	30						
nope		24						
ofE		18			47.3	47.3		48.1
(cm)		9 12 18		4549	46.0	46.3		47.4
asua		6		45.6	44.7	45.3		46.7
nmfen		9		39.7 42.8 45.6 4549	42.8	43.2		44.6
t Circ		e		39.7	40.1 42.8 44.7 46.0 47.3	34.3 40.0 43.2 45.3 46.3	(um)	32.9 41.0 44.6 46.7 47.4 48.1
Ches		0	rence		34.0	34.3	erence	32.9
II-Head and	7		Head Circumference	Mean	Median	Mean	Chest Circumference (cm)	Mean
TABLE XXXIII-Head and Chest Circumference (cm) of European Children	A11A	Autor/ 1 car	č.	Roede & Van (27) Weiringen 1985	Hernandez et al. 1985 (30)	Kurniewicz- Witczakowa et al. 1983 (29)		Kurniewicz- Witczakowa et al. 1983 (29)
		riace			Bilbo	Warsaw		Warsaw
-3		Country		Netherlands	Spain	Poland		Poland

GROWTH IN AFFLUENT PRESCHOOLERS

 $\hat{\eta}_{j}$

a.

PlaceAuthor/YearBi036912182430NationalEiben & Panto 1986 (26)MeanEuropeanI6.3I7.0I6.3I7.0NationalEiben & Panto 1986 (26)MeanMeanI6.3I6.3I6.3I6.3I6.3OosterwoldeGerver 1988 (23)MeanMeanI6.3I6.3I6.3I6.3WarsawWantewordWitczakowa et al. 1983 (29)MeanI6.0I6.0I6.3BilbaoHernandez et al. 1983 (30)MeanAsianI6.0I6.3I6.3Terai regionMartorell et al. 1984 (23)MeanBainI6.0I6.3I6.3			TABLE XXXIV-Comparison of Midam Circumference (cm) of European and Asian Children	nison	of Miu	lam	Circu	uferen	ice (ci	n) of E	noper	uu uu	d Asic	m Chu	ldren				
i i	ntry	Place	Author/Year								Å.	ge (moi	(SUI)						
\prime NationalEiben & Panto 1986 (26)MeanandsOosterwoldeGerver 1988 (23)MeanBergenWaaler 1983 (28)Mean16.3BergenWaaler 1983 (28)MeanWarsawKurniewicz-MeanWitczakowa er al. 1983 (29)Mean16.0BilbaoHernandez et al. 1983 (30)MeanTerai regionMartorell er al. 1984 (23)MeanTerai regionMartorell er al. 1984 (23)Mean		< 14 10			Bi	0	ю	9	6					5 42	48	54	09	99	22
v National Eiben & Panto 1986 (26) Mean 16.3 17.0 ands Oosterwolde Gerver 1988 (23) Mean 16.3 17.0 Bergen Waaler 1983 (28) Mean 16.3 17.0 Warsaw Wrinewicz- Mean 16.0 16.5 Waitzakowa et al. 1983 (29) Mean 16.0 16.5 Bilbao Hernandez et al. 1983 (20) Mean 16.0 16.3 Terai region Martorell et al. 1984 (23) Mean 16.0 16.3		5			Europ	ean													
ands Costerwolde Gerver 1988 (23) Mean 16.3 17.0 Bergen Waaler 1983 (28) Mean 16.3 17.0 Bergen Waaler 1983 (28) Mean 16.0 16.0 Warsaw Kurniewicz- Mean 16.0 16.5 Warsaw Kurniewicz- Mean 16.0 16.5 Bilbao Hernandez et al. 1983 (30) Mean 16.0 16.3 Terai region Martorell et al. 1984 (23) Mean B 5		National		Mean									1	5.7	16.8	20	17.0		17.4
Bergen Waaler 1983 (28) Mean Warsaw Kurniewicz- Witczakowa er al. 1983 (29) Mcan Bilbao Hernandez er al. 1983 (30) Mean Bilbao Hernandez er al. 1985 (30) Mean Terai region Martorell er al. 1984 (23) Mean		Oosterwolde		Mean						16.3	1	0.7	-	7.4	17.6	5	17.7		17.9
WarsawKurniewicz- Witczakowa er al: 1983 (29)Mean16.016.5BilbaoHernandez et al: 1985 (30)Mean16.016.3Terai regionMartorell et al. 1984 (23)Mean16.016.3	way	Bergen		Mean									-	5.4	16.8	80	17.3		17.6
Bilbao Hernandez et al. 1985 (30) Mean 16.0 16.3 Asian Terai region Martorell et al. 1984 (23) Mean B G	pu	Warsaw	et al. 1983 (29)	Mean						16.0	16	53	-	9.6	16.8	80	17.3		17.9
Asian Terai region Martorell <i>et al.</i> 1984 (23) Mean B G		Bilbao	Hernandez et al. 1985 (30)	Mean						16.0	10	6.3	1	6.7	17.0	G	17.2		17.4
Terai region Martorell <i>et al.</i> 1984 (23) Mean B G					Asian														
	la	Terai region		Mean	e U									3.9	14.1 13.8	8	14.0		14.0
Median B 9.8 12.3 13.7 14.3 G 00 122 13.5 141	Present Study			Median	щ	9.8	12.3	13.7	14.3	14.5	11			5.4	15.8	00 of	16.2	16.5	16.7

VOLUME 31-APRIL 1994

REFERENCES

- World Health Organization. A Growth Chart for International Use in Maternal and Child Health Care. Guidelines for Primary Health Care Personnel. Geneva, 1978.
- Gomez F, Ramos Galvan R, *et al.* Morality in third degree malnutrition. J Trop Pediatr 1956, 2: 77-83.
- 3. Waterlow JC, Buzina R, Keller W, *et al.* The presentation and use of height and weight data for comparing the nutritional status of groups of children under the age of 10 years. Bull WHO 1977, 55: 489-498.
- Karlberg P, Taranger J, Engstrom T, et al. The somatic development of children of a Swedish Urban Community. A prospective longitudinal study. Acta Pediatr Scand 1976, Suppl 258: 7-31.
- Van Wieringen JC, Wafelbaker F, Verbrugge HP, de Haas J. Growth diagrams, 1965, Netherlands, Wolters-Noordhoff Groningen.
- Hamill PVV, Johnson CL, Red RV, Roche AF. NCHS Growth Curves for Children, Birth—18 years. Hyattsville, MD, National Center for Health Statistics. 1977. Publication Number DHS 878-1650.
- Weiner JS, Lourie JA. A Guide to Field Methods. Oxford, Blackwell Scientific Publication, 1969.
- Falkner F, Tanner JM. Methodology, ecological, genetic and nutritional effect on growth. *In:* Human Growth. A Comprehensive Treatise, Vol. 3. New York, Plenum Press 1986. pp 241-327.
- DeBoor C, Rice JR. Least square cubic spine approximation I—Fixed knots. Tech Rep No. 20. Computer Science Department, Purdue University, W. Lafayette, April 1968.
- Patterson HD. Sampling on successive occasions with partial replacement of units. JRSS(B) 1950, 12: 240-255.

- 11. Tanner JM. Some notes on the reporting of growth data. Hum Biol 1951, 23: 93-159.
- Hebicht JP, Martorella R, Yarbrough C. Malina RM, Klein RE. Height and weight standards for preschool children: How relevant are ethnic differences in growth potential? Lancet 1974. 1, 611-615.
- Goldstein H, Tanner JM. Ecological considerations in the creation and use of child growth standards. Lancet 1980, 1: 582-585.
- 14. Tanner JM. Use and abuse of growth standards. *In:* Human Growth, Vol 3, 3rd edn. Eds Frank F, Tanner JM. New York, Plenum, 1986, pp 95-109.
- 15. Enesbio JS, Nube M. Attainable growth. Lancet 1981, ii: 1223.
- Seckler D. Newer concept in nutrition and their implications for policy. Ed Sukhatme PV. Maharashtra Association for Cultivation of Science 1982, p 127.
- Agarwal KN, Agarwal DK, Benakappa DG, *et al.* Growth Performance of Affluent Indian Children (under-fives). Growth Standards for Indian Children. New Delhi, Scientific Report No. 11, Nutrition Foundation of India, 1991, pp 1-70.
- Editorial. A measure of agreement on growth standards. Lancet 1984, i: 142-143.
- Indian Council of Medical Research. Growth and Physical Development of Indian Infants and Children, New Delhi, 1972.
- Vanloon H, Sayerys V, Vuylsteke JP, Vlietinck RF, Feckels R. Local versus universal growth standards: The effect of using NCHS as universal reference. Ann Hum Biol 1986, 13: 347-357.
- Rao MN, Rao CR. Linked cross-sectional study for determining norms and growth rates. A pilot study of Indian school-going boys. Sankhya (B) 1966, 28: 237-258.

- 22. Eveleth PB, Tinner JM. Worldwide Variations in Human Growth, 2nd edn. Cambridge, Cambridge University Press, 1990, pp 17-43, 90-116.
- 23. BaumgartnerRYS, Roche AF,HimesJH. Incremental growth tables: Supplementary to previously published charts. Amer J Clin Nutr 1986, 43: 711-731.
- 24. Vercauteren M. Evolution seculare et normes de croissance chez des enfants bleges. Bull Soc Roy Blege d' Anthropol Prehistorique 1984, 95: 109-123.
- Andersen E, Hutchings B, Jansen J, Nyholm N, Hojde og vaegt hos danskeborn. Ugeskrift for Laeger 1982,144:1760-1765.
- Eiben OG, Panto E. The Hungarian National Growth Standards. Anthropologai Kozlemenyek 1986, 30: 1-40.
- Roede MJ, Van Wieringen JC. Growth Diagrams, 1980, Tijdschr Soc Gezondheidszorg 1985, 63: 1-34.
- Waaler PE. Anthrompometric studies in Norwegian children. Acta Pediatr Scand (Suppl) 1983, 308: 1-41.
- 29. Kurniewicz-Witczakowa R, Miesowicz I, Niedzwieeka Z, Pietrazak M. Razwoj Fizycyny Dzieci I Mlodzieizy Warszawskiej. Poland, Institute of Mother and Child, Warsaw, 1983.

- Hernandez M, Castellet J, Narvaiza JL, et al. Curves Y Tablas de Crecimiento. Editorial Garsi. Madrid, 1988.
- Zhang X. Studies on the physical development of children and adolescents in New China. Chinese Med J 1977, 3: 364-372.
- Zhang X, Huang Z. The second national growth and development survey of children in China, 1985: Children 0-7 years. Ann Hum Biol 1988, 15: 289-306.
- Leung AAF, Lam YM, Liu S, *et al.* Height, weight and head circumference in Shatin children 3-7 years of age: Further evidence for secular changes. Hong Kong J Pediatr 1987, 4: 43-51.
- 34. Kikuta F, Takaishi M. Studies on physical growth standards for school children in Japan. Part I. Centile curves for height and weight based on cross-sectional data and a consideration of secular trend of the centile curves. Jpn J Child Health 1987, 46: 27-33.
- Khanjanasthi P, Chawewan C, Siripat W. Growth of Bangkok Children, 0-18 years. Ma'nidol University, Bangkok.
- AgarwalDK, Agarwal KN, Upadhyay SK, Mittal R, Prakash R, Rai S. Physical and sexual growth pattern of affluent Indian children from 5 to 18 years of age. Indian Pediatr 1992, 29: 1203-1282.